refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 175 results
Sort by

Filters

Technology

Platform

accession-icon SRP075476
Differentiation and specification of resident tissue macrophages [SMART-Seq2]
  • organism-icon Mus musculus
  • sample-icon 158 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Tissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates

Publication Title

Specification of tissue-resident macrophages during organogenesis.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP075553
Differentiation and specification of resident tissue macrophages [MARS-seq]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 1500

Description

Tissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates

Publication Title

Specification of tissue-resident macrophages during organogenesis.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE84992
Expression data from human primary skeletal muscle myotubes treated with aldosterone alone or in combination
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE84990
Expression data from human primary skeletal muscle myotubes treated with aldosterone, spironolactone, eplerenone, mifepristone, prednisolone or vehicle
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

To define the direct gene expression changes in normal human skeletal muscle with mineralocorticoid and glucocorticoid receptor agonist and antagonist treatment.

Publication Title

Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE84991
Expression data from human primary skeletal muscle myotubes treated with aldosterone alone or co-incubated with aldosterone plus spironolactone, eplerenone, or mifepristone
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

To uncover whether aldosterone induces gene expression changes through mineralocorticoid or glucocorticoid receptors and determine if eplerenone and spironolactone could block aldosterone induced gene expression to the same extent

Publication Title

Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8421
Gene Expression Profile in Rat Adrenal Zona Glomerulosa Cells Stimulated with Aldosterone Secretagogues
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The mineralocorticoid aldosterone mainly produced by the adrenal gland is essential for life but an abnormal excessive secretion causes severe pathological effects including hypertension and target organ injury in the heart and kidney. The aim of this study was to determine the gene regulatory network triggered by aldosterone secretagogues in a non transformed cell system. Freshly isolated rat adrenal zona glomerulosa cells were stimulated with the two main aldosterone secretagogues, angiotensin II and potassium, for two hours and subjected to whole genome expression studies using multiple biological and bioinformatics tools. Several genes were differentially expressed by Ang II (n=133) or potassium (n=216). Genes belonging to the nucleic acid binding and transcription factor activity categories were significantly enriched. A subset of the most regulated genes were confirmed by real-time RT-PCR and then their expression analyzed in time curve studies. Differentially expressed genes were grouped according to their time-response expression pattern and their promoter regions analyzed for common regulatory transcription factors binding sites. Finally, data mining with gene promoters, transcription factors and literature databases were performed to generate gene interaction networks for either Ang II or potassium. This study provides for the first time a complete study of the genes that are regulated, and the interaction between them, by aldosterone secretagogues in rat adrenal cells. Increasing our knowledge of adrenal physiology and gene regulation in non transformed cell systems would lead us to a better approach for discovery of candidate genes involved pathological conditions of the adrenal cortex.

Publication Title

Gene expression profile in rat adrenal zona glomerulosa cells stimulated with aldosterone secretagogues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE70822
Expression data from human primary skeletal muscle myotubes treated with aldosterone, spironolactone, or vehicle.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

To test for a function effect of mineralocorticoid receptor modulation in skeletal muscle, global gene expression analysis was conducted on human myltubes treated with a mineralocorticoid receptor agonist or antagonist.

Publication Title

Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE70984
Expression data from quadriceps of utrn+/-;mdx mice treated with spironolactone plus lisinopril compared to untreated
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify the gene expression differences in skeletal muscles resulting from treatment of dystrophic mice with spironolactone plus lisinopril

Publication Title

Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target.

Sample Metadata Fields

Sex, Age, Treatment

View Samples
accession-icon GSE90471
Comparison of R1, R2 and R3
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

3 samples of R1, R2 and R3 bone marrow monocytes were compared from 3 biological replicates in 3 separate experiments.

Publication Title

The Heterogeneity of Ly6C<sup>hi</sup> Monocytes Controls Their Differentiation into iNOS<sup>+</sup> Macrophages or Monocyte-Derived Dendritic Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18842
Gene expression analysis of human lung cancer and control samples
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PURPOSE

Publication Title

Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer.

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact