refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 431 results
Sort by

Filters

Technology

Platform

accession-icon GSE18015
Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs) are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM.

Publication Title

Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP052978
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and cardiac-specific Bmi1 deletion [human]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

To explore the primary cause of Dilated Cardiomyopathy in heart samples from DCM-diagnosed patients who had undergone heart transplant (hDCM), we set out to identify differentially expressed genes by massively parallel sequencing of heart samples. Overall design: Methods: Heart mRNA profiles from DCM-diagnosed patients who had undergone heart transplant (hDCM) were generated by deep sequencing, in triplicate, using Illumina GAIIx.

Publication Title

Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP051396
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and cardiac-specific Bmi1 deletion [mouse]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

To explore the primary cause of Dilated Cardiomyopathy in Bmi1-null mice, we set out to identify differentially expressed genes by massively parallel sequencing of heart samples from Bmi1f/f;aMHCTM-Cretg/+ mice versus aMHCTM-Cretg/+ control mice (17 weeks postinduction). Overall design: Methods: Heart mRNA profiles of 17-weeks post-induction Bmi1f/f; MHCTM-Cretg/+ mice and MHCTM-Cretg/+ control mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. Sequence reads were pre-processed with Cutadapt 1.2.1, to remove TruSeq adapters and mapped on the mouse transcriptome (Ensembl gene-build GRCm38.v70) using RSEM v1.2.3. The Bioconductor package EdgeR was used to normalize data with TMM and to test for differential expression of genes using GLM.

Publication Title

Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE103110
Effect of 20% fructose feeding and dietary salt on RNA expression in the renal cortex of rats
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Elevated fructose consumption has been associated with metabolic and renal diseases. It is controversial whether kidney problems are a result of systemic metabolic disease or stem, at least in part, from changes due to local fructose metabolism. To study the short-term effect of fructose on genetic programs in renal proximal tubules, the diet for rats in experimental groups was supplemented for 7 days with 20% fructose in the drinking water. Two sets of 8 rats each on different baseline rodent diets were used in this study. 4 animals of each set received fructose in the drinking water while the other 4 served as controls. Animals were sacrificed after the experimental period of 7 days and slices of superficial kidney cortex were used for total RNA extraction. The RNA was analyzed with Affymetrix RaGene-2_0-st.

Publication Title

Transcriptome signature for dietary fructose-specific changes in rat renal cortex: A quantitative approach to physiological relevance.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE10392
Gene regulation profile of Medroxyprogesterone acetate (MPA)-treated late pregnant cervix
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Noval and traditional signaling pathways involved in cervical ripening that were regulated by MPA were identified.

Publication Title

Preventing cervical ripening: the primary mechanism by which progestational agents prevent preterm birth?

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP197300
RNA-seq data of PatchSeq dataset from Pvalb-Cre positive interneurons in the mouse hippocamus CA1 region
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This study takes on the problem of bridging transcriptional data to neuronal phenotype and function by using publicly available datasets characterizing distinct neuronal populations based on gene expression, electrophysiology and morphology. In addition, a non-published PatchSeq dataset of Pvalb-cre positive cells in CA1 was used, which is the dataset submitted here. Taken together, these datasets were used to identify cross-cell type correlations between these data modalities. Detected correlations were classified as “class-driven” if they could be explained by differences between excitatory and inhibitory cell classes, or “non-class driven” if they could be explained by gradient like phenotypic differences within cell classes. Some genes whose relationships to electrophysiological or morphological properties were found to to be specific to either excitatory or inhibitory cell types. The Patch Seq data specifically allowed simultaneous single-cell characterization of gene expression and electrophysiology, showing that the gene-property correlations observed across cell types were further predictive of within-cell type heterogeneity. Overall design: Patchseq data was collected from single cells of the mouse hippocampus CA1 in order to investigate correlations between gene expression patterns and electrophysiological properties of various interneuron cell classes 19 individual cells Re-analysis details included in supplementary file readme.txt.

Publication Title

Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE9361
Functional interaction between a PIP2 novel polyA polymerase and type 1 PIPKIalpha
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A loss of StarPap would be predicted to result in a decrease in cellular levels of mRNAs which it polyadenylates. Moreover, if PIPKIalpha has a function relationship with StarPap, knockdown of PIPKIalpha should cause a decrease in a pool of target mRNAs which require both StarPap and PIPKIalpha for their maturation. To test this, we independently knocked down StarPap and PIPKIalpha, and performed microarray analysis of total polyadenylated mRNAs from each group.

Publication Title

A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE139085
Expresion and methylation analysis of adult somatic cell lines, five days after OSK, AOX15 and AO9 overxpression and derived iPSC using the different combinations
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methods of reprogramming somatic cells to an induced pluripotent state (iPSC) have enabled the direct modeling of human disease and ultimately promise to revolutionize regenerative medicine. iPSCs offer an invaluable source of patient-specific pluripotent stem cells for disease modeling, drug screening, toxicology tests and importantly for regenerative medicine, and already have been employed to unmask novel insights into human diseases. While iPSCs can be consistently generated through overexpression of the four Yamanaka Factors OCT4, SOX2, KLF4 and c-MYC (OSKM), reprogrammed cells present worrisome differences with embryonic stem cells in transcriptional and epigenetic profiles, as well as developmental potential and difficulties in cell culturing. A thorough mechanistic understanding of the reprogramming process is critical to overcoming these barriers to the clinical use of iPSC. We have recently published a novel factor combination based on molecules specifically enriched in the metaphase II human oocyte. We have shown that just the overexpression of histone-remodeling chaperone ASF1A and OCT4 in hADFs previously exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells (AO9-iPSCs). Our study contributes to the understanding of the molecular pathways governing somatic cell reprogramming. Here we want to go deeper in the reprogramming mechanisms by understanding the importance of somatic cell origin, and analyzing (and establishing comparison with) the transcriptional and epigenetic characteristics of AO9-iPSCs. As the intrinsic histone chaperone activity of ASF1A and our data indicate, these cells could be closer to the embryonic pluripotent state, with less epigenetic memory, better culture properties and differentiation potential.

Publication Title

Analysis of Menstrual Blood Stromal Cells Reveals SOX15 Triggers Oocyte-Based Human Cell Reprogramming.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE18713
Changes in gene expression induced by miR29b in HTM cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To investigate the role of miR-29b on the changes in expression of genes involved in the synthesis and deposition of extracellular matrix in human trabecular meshwork cells (HTM).

Publication Title

Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE115313
Transcriptomics analysis of paired tumor and normal mucosa samples in a cohort of patients with colon cancer, with and without T2DM.
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This is a transcriptomics analysis contributing to a bigger project that tries to shed light on the role of type 2 diabetes mellitus (T2DM) as a risk factor for colon cancer (CC). Here we present a gene expression screening of paired tumor and normal colon mucosa samples in a cohort of 42 CC patients, 23 of them with T2DM. Using gene set enrichment, we identified an unexpected overlap of pathways over-represented in diabetics compared to non-diabetics, both in tumor and normal mucosa, including diabetes-related metabolic and signaling processes. An integration with other -omic studies suggests that in diabetics, the local micro-environment in normal colon mucosa may be a factor driving field cancerization which may promote carcinogenesis. Several of these pathways converged on the tumor initiation axis TEAD/YAP-TAZ. Cell culture studies confirmed that high glucose concentrations upregulate this pathway in non-tumor colon cells. In conclusion, diabetes is associated to deregulation of cancer-related processes in normal colon mucosa adjacent to tissue which has undergone a malignant transformation. These data support the existence of the field of cancerization paradigm in diabetes and set a new framework to study link between diabetes and cancer.

Publication Title

Molecular evidence of field cancerization initiated by diabetes in colon cancer patients.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact