refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 54 results
Sort by

Filters

Technology

Platform

accession-icon GSE52192
Transcriptional profiling of embryonic skeletal muscle stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Muscle stem cells (MuSC) change molecular and functional properties during development. Using a transgenic Tg:Pax7-nGFP mice, we FACS-isolated MuSC from embryonic (E12.5) and foetal (E17.5) stages to understand the differences and similarities amongst the myogenic stem/progenitor populations.

Publication Title

Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP043463
Genome-wide identification of rat long non-coding RNAs
  • organism-icon Rattus norvegicus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

In the current study, we have focused on a distinct group of non-coding elements, lncRNA, and profiled renal tissues from three different inbred rat strains. We chose the three strains S, SHR and R for the main purpose of cataloging lncRNA annotations from the most widely used rat models of cardiovascular and renal disease. Overall design: Identification of lncRNAs on the rat genome by next generation RNA sequencing (NGS)

Publication Title

Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60618
Treatment of primary effusion lymphoma cell lines with lenalidomide
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Technical replicates from BC3 and BCBL1 cell lines were treated with DMSO or 5 micromoles of lenalidomide for 24 hours.

Publication Title

Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion lymphoma in a cereblon-dependent manner and display synergistic cytotoxicity with BRD4 inhibitors.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE49245
NF-kB essential modulator (NEMO) is essential for KSHV-encoded viral FLICE inhibitory protein (vFLIP) K13- induced gene expression and its N-terminal 251 resdidues are sufficent for this process
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We report here that KSHV viral infection targets the NF-kB pathway which is crucial for cell survival. KSHV protein vFLIP K13 is known to directly interact with cellular protein NEMO of the NF-kB pathway. We used gene expression array to suggets that the interaction of K13 with NEMO is important to activate NF-kB pathway.

Publication Title

NEMO is essential for Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13-induced gene expression and protection against death receptor-induced cell death, and its N-terminal 251 residues are sufficient for this process.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE72276
Mammary transcriptome of rats treated with low-dose environmental chemicals at critical developmental windows
  • organism-icon Rattus norvegicus
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Exposure to common environmental chemicals, including those found in personal care products has been linked to mammary cancer at high doses in animal models. Their effects at low doses at levels comparable to human exposure, especially during critical windows of development remain poorly understood. Using a Sprague-Dawley rat model, we investigated the effects of of three environmental chemicals diethyl phthalate (DEP), methyl paraben (MPB) and triclosan (TCS) on the transcriptome of normal developing mammary glands at low doses mimicking human exposure. Rats were exposed during three windows of early development perinatal (gestation day (GD) 1 - 20 or postnatal day (PND) 1 - 20), prepubertal (PND 21 - 41) and pubertal (PND 42 - 62), as well as chronic exposure from birth to end of lactation (PND 1 - 146). Mammary gland whole-transcriptomes were profiled by Affymetrix rat gene 2.0 st arrays.

Publication Title

Changes in mammary histology and transcriptome profiles by low-dose exposure to environmental phenols at critical windows of development.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87613
Transcriptome of normal mammary glands of Sprague-Dawley rats at six stages of development: pre-pubertal, peri-pubertal, pubertal, lactation, adult parous and age-matched nulliparous
  • organism-icon Rattus norvegicus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

There is a lack of systematic investigations of large-scale transcriptome patterns associated with normal breast development. Herein, we profiled whole-transcriptome (by microarrays) of normal mammary glands in female Sprague-Dawley rats, an animal model widely used in breast cancer research, across six distinctive developmental stages pre-pubertal, peri-pubertal, pubertal, lactation, and adult parous and age-matched nulliparous.

Publication Title

Histology and Transcriptome Profiles of the Mammary Gland across Critical Windows of Development in Sprague Dawley Rats.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE23643
Cardiac transcriptome profiles of S.LEW congenic strain compared with the hypertensive Dahl S rat
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Despite inheritance of hypertension in families, identifying genetic mechanisms predisposing individuals to hypertension has remained challenging. The effects of single genes contributing to the development of hypertension may not be readily detected in individuals whose genomes also contain other genetic factors that resist hypertension. By using a highly permissive rat genome for inherited hypertension, we demonstrate that increased expression of one such gene, Rififylin (Rffl), is a novel inherited risk factor for hypertension and increased mortality. Animals overexpressing Rffl demonstrated delayed endocytic recycling, accumulated polyubiquitinated proteins, increased beats/min of neonatal cardiomyocytes, had shorter QT-intervals and developed salt-insensitive hypertension very early in their life (50-52 days). Thus, the discovery of a physiological link between overexpression of rififylin and the development of hypertension constitutes a novel mechanism that could be targeted for rectifying normal QT-interval and preventing hypertension.

Publication Title

Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP012585
Identification of miRNA signatures during the differentiation of hESCs into retinal pigment epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Retinal pigment epithelium (RPE) cells can be obtained through in vitro differentiation of both embryonic stem cell (ESC) and induced pluripotent stem cells (iPSC) for cell replacement therapy. We have previously identified 87 signature genes relevant to RPE cell differentiation and function through transcriptome analysis of both human ESC- and iPSC-derived RPE as well as normal fetal RPE. Here, we profiled miRNA expression through small RNA-seq in human ESCs and their RPE derivatives. Much like conclusions drawn from our previous transcriptome analysis, we found that the overall miRNA landscape in RPE is distinct from ESCs and other differentiated somatic tissues. We also profiled miRNA expression during intermediate stages of RPE differentiation and identified unique subsets of miRNAs that are gradually up- or downregulated, suggesting dynamic regulation of these miRNAs is associated with the RPE differentiation process. Indeed, the down-regulation of a subset of miRNAs during RPE differentiation is associated with up-regulation of RPE-specific genes, such as RPE65, which is exclusively expressed in RPE. We conclude that miRNA signatures can be used to classify different degrees of in vitro differentiation of RPE from human pluripotent stem cells. We suggest that RPE-specific miRNAs likely contribute to the functional maturation of RPE in vitro, similar to the regulation of RPE-specific mRNA expression. Overall design: Study miRNA in ESC-derived RPE

Publication Title

Identification of miRNA signatures during the differentiation of hESCs into retinal pigment epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE22515
DEFINING A RAT BLOOD PRESSURE QUANTITATIVE TRAIT LOCUS TO A <81.8KB CONGENIC SEGMENT: COMPREHENSIVE SEQUENCING AND RENAL TRANSCRIPTOME ANALYSIS.
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Evidence from multiple linkage and genome-wide association studies suggest that human chromosome 2 (HSA2) contains alleles that influence blood pressure (BP). Homologous to a large segment of HSA2 is rat chromosome 9 (RNO9), to which a BP quantitative trait locus (QTL) was previously mapped. The objective of the current study was to further resolve this BP QTL. Eleven congenic strains with introgressed segments spanning <81.8kb to <1.33Mb were developed by introgressing genomic segments of RNO9 from the Dahl salt-resistant (R) rat onto the genome of the Dahl salt-sensitive (S) rat and tested for BP. The congenic strain with the shortest introgressed segment spanning <81.8kb significantly lowered BP of the hypertensive S rat by 25 mm Hg and significantly increased its mean survival by 45 days. In contrast, two other congenic strains had increased BP compared with the S. We focused on the <81.8kb congenic strain which represents the shortest genomic segment to which a BP QTL has been definitively mapped to date in any species. Sequencing of this entire region in both S and R rats detected 563 variants. The region did not contain any known or predicted rat protein coding genes. Further, a whole genome renal transcriptome analysis between S and the <81.8kb S.R congenic strain revealed alterations in several critical genes implicated in renal homeostasis. Taken together, our results provide the basis for future studies to examine the relationship between the candidate variants within the QTL region and the renal differentially expressed genes as potential causal mechanisms for BP regulation.

Publication Title

Defining a rat blood pressure quantitative trait locus to a &amp;lt;81.8 kb congenic segment: comprehensive sequencing and renal transcriptome analysis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE39875
5 Day Oral Study of A-998679 in Male Sprague Dawley Rats
  • organism-icon Rattus norvegicus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AhR activation underlies the CYP1A autoinduction by A-998679 in rats.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact