refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 305 results
Sort by

Filters

Technology

Platform

accession-icon GSE14434
U1 Adaptors: a new gene silencing technology
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of the microarray experiment was to do a head-to-head comparison of the U1 Adaptor technology with siRNA in terms of specificity at the genome-wide level. U1 Adaptors represent a novel gene silencing method that employs a mechanism of action distinct from antisense and RNA interference (RNAi). The U1 Adaptor is a bifunctional oligonucleotide having a Target Domain that is complementary to a site in the target gene's terminal exon and a U1 Domain that binds to the U1 small nuclear RNA (snRNA) component of the U1 small nuclear ribonucleoprotein (U1 snRNP) splicing factor. Tethering of U1 snRNP to the target pre-mRNA inhibits 3' end processing (i.e., polyA tail addition) leading to degradation of that RNA species within the nucleus thereby reducing mRNA levels. We demonstrate that U1 Adaptors can specifically inhibit both reporter and endogenous genes. Further, targeting the same gene either with multiple U1 Adaptors or with U1 Adaptors and small interfering RNAs (siRNAs), strongly enhances gene silencing, the latter as predicted from their distinct mechanisms of action. Such combinatorial targeting requires lower amounts of oligonucleotides to achieve potent silencing.

Publication Title

Gene silencing by synthetic U1 adaptors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30848
Muscle wasting and the temporal gene expresion pattern in a novel rat ICU model
  • organism-icon Rattus norvegicus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Acute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. In order to elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness in AQM, gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals.

Publication Title

Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE47495
Transcriptional profiling of left ventricle and peripheral blood cells in rats with post-myocardial infarction
  • organism-icon Rattus norvegicus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Myocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. In this study, we performed transcriptional profiling of LVs in rats with a wide range of experimentally induced infarct sizes and of peripheral blood mononuclear cells (PBMCs) in animals that developed HF.

Publication Title

Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21476
Comparison of Mineralizing Synchronous UMR106-01 cells with UMR106-01 cells treated with Mineralization Inhibitor AEBSF
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

UMR106-01 osteoblastic cells are a model for studying bone mineralization. We have shown that mineralization is temporally synchronized within cultures grown under defined conditions . Cells are plated at time zero and differentiate into osteoblastic phenotype by 64 h later. If an exogenous phosphate source is added to the cultures, the cells form and deposit hydroxyapatite mineral within distinct extracellular supramolecular lipid protein complexes termed biomineralization foci (BMF) starting 12 h later. Mineralization is largely complete by 24 h later (88 h after plating). We have also shown that AEBSF, covalent serine protease inhibitor, blocks mineralization within BMF and inhibits the fragmentation of several proteins related to biomineralization. The present experiment was designed to test whether AEBSF treatment for 12 h has an effect on transcription by UMR106-01 osteoblastic cells. AEBSF is known to inactivate several serine proteases including SKI-1 (site 1, subtilisin kexin protease-1).SKI-1 functions intracellularly to activate transmembrane bound transcription factor precursors releasing the transcriptionally active N-terminal portions to imported into the nucleus. Thus, if AEBSF blocks transcription of mineralization related genes, it would support a role for SKI-1 in gene regulation in mineralizing UMR106-01 osteoblastic cells.

Publication Title

Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE19539
Identification of Novel Oncogene Loci in Ovarian Cancer through Integrated Copy Number and Expression Analysis
  • organism-icon Homo sapiens
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Use of expression data to analyse ovarian cancer often yields long lists of genes that do not agree across various studies. Copy number however is more stable and can reliable predict important regions of change. Using matched copy number and expressiion data helps accurately identify novel drivers of ovarian cancer.

Publication Title

Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon SRP014655
Chromatin dynamics and genome-wide profiling of repetitive elements during early mammalian embryogenesis.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We have used repetitive elements, including retrotransposons, as model loci to address how and when heterochromatin forms during development. High throughput RNA-sequencing using a Nano-CAGE protocol throughout early embryogenesis revealed that the expression of repetitive elements is abundant in embryonic cells, highly dynamic and stage-specific, with most repetitive elements becoming repressed before implantation. Furthermore, we show that Line L1 elements and IAP retrotransposons become reactivated from both parental genomes in mouse embryos after fertilisation, indicating an open chromatin configuration at the beginning of development. Our data show that the reprogramming process that follows fertilisation is accompanied by a robust transcriptional activation of retrotransposons and suggests that expression of repetitive elements is initially regulated through an RNA-dependent mechanism in mammals. Overall design: Genome Wide profiling of CAGE transcripts using Nano-CAGE and RNAseq in oocytes and 3 different stages of mouse pre-implantation development

Publication Title

Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP097877
An RNA-seq dataset for studies of gene expression variation in the MAGIC line resource of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 199 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To understand the population genetics of structural variants (SVs), and their effects on phenotypes, we developed an approach to mapping SVs, particularly transpositions, segregating in a sequenced population, and which avoids calling SVs directly. The evidence for a potential SV at a locus is indicated by variation in the counts of short-reads that map anomalously to the locus. These SV traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between an SV trait at one locus and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3x) population sequence data from 488 recombinant inbred Arabidopsis genomes, we identified 6,502 segregating SVs. Remarkably, 25% of these were transpositions. Whilst many SVs cannot be delineated precisely, PCR validated 83% of 44 predicted transposition breakpoints. We show that specific SVs may be causative for quantitative trait loci for germination, fungal disease resistance and other phenotypes. Further we show that the phenotypic heritability attributable to sequence anomalies differs from, and in the case of time to germination and bolting, exceeds that due to standard genetic variation. Gene expression within SVs is also more likely to be silenced or dysregulated, as inferred from RNA-seq data collected from a subset of just over 200 of the MAGIC lines. This approach is generally applicable to large populations sequenced at low-coverage, and complements the prevalent strategy of SV discovery in fewer individuals sequenced at high coverage. Overall design: 209 samples consisting of different inbred lines from the Multiparent Advance Generation InterCross (MAGIC) population in the reference plant, Arabidopsis thaliana. For each sample, RNA was collected from the aerial shoot at the 4th true leaf stage, and Illumina mRNA-seq libraries were constructed (a single library was constructed with each line; that is, each MAGIC line is represented by one biological replicate). Using these libraries, which were non-stranded, paired-end 100 bp RNA-seq Illumina reads were generated for each sample, and used to quantify gene expresison in each MAGIC line. The resulting expression phenotypes are suitable for describing the impacts of genetic variation in the MAGIC line founders on the control of gene expression.

Publication Title

Genomic Rearrangements in <i>Arabidopsis</i> Considered as Quantitative Traits.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE59867
Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure
  • organism-icon Homo sapiens
  • sample-icon 436 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Heart failure (HF) is the most common cause of morbidity and mortality in the developed countries, especially considering the present demographic tendencies in those populations.

Publication Title

Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62646
Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction
  • organism-icon Homo sapiens
  • sample-icon 97 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI) is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients.

Publication Title

Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE54756
Expression data from TGFBR3 controls and TGFBR3 knockdown of SUM159 3D cultures
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The objective of this experiment was to determine global gene expression change in triple negative cell line upon knockdown of TGFBR3. Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST affymetrix array. RNA was extracted from SUM159 controls and SUM159 TGFBR3KD cells cultured in 3-dimensional in vitro system.

Publication Title

Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact