refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 111 results
Sort by

Filters

Technology

Platform

accession-icon GSE35643
Expression data from human bronchial airway smooth muscle (ASM) cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Interleukin (IL)-17 plays an important and protective role in host defence and has been demonstrated to orchestrate airway inflammation by cooperating with and inducing proinflammatory cytokines. Mircoarrays were used to identify immediate-early/ primary response IL-17A-dependent gene transcripts in primary human bronchial ASM cells from mild asthmatic and healthy individuals.

Publication Title

IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE12948
Oncogenesis of T-ALL and non-malignant consequences of overexpressing NOTCH1
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have determined the consequences of ICN1 overexpression from retroviral vectors introduced into bone marrow cells.

Publication Title

Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41220
Gene expression data from cultured cortical neurons.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used Affymetrix DNA arrays to investigate the extent to which nuclear HDAC4 accumulation affects neuronal gene expression.

Publication Title

HDAC4 governs a transcriptional program essential for synaptic plasticity and memory.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7050
Stabilization of b-catenin induces lymphomas
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Activation of b-catenin has been causatively linked to the etiology of colon cancer. Conditional stabilization of this molecule in pro-T-cells promotes thymocyte development without the requirement for preTCR signaling. We show here that activated b-catenin stalls the developmental transition from the double-positive (DP) to the single-positive (SP) thymocyte stage and predisposes DP thymocytes to transformation. b-Catenin induced thymic lymphomas have a leukemic arrest at the early DP stage. Lymphomagenesis requires Rag activity, which peaks at this developmental stage, as well as additional secondary genetic events. A consistent secondary event is the transcriptional upregulation of c-Myc, whose activity is required for transformation since its conditional ablation abrogates lymphomagenesis. In contrast, the expression of Notch receptors as well as targets is reduced in DP thymocytes with stabilized b-catenin and remains low in the lymphomas indicating that Notch activation is not required or selected for in b-catenin induced lymphomas. Thus, b-catenin activation may provide a mechanism for the induction of T-ALL that does not depend on Notch activation.

Publication Title

Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6119
Exogenous Glucosamine Globally Protects Chondrocytes from the Arthritogenic Effects of IL-1beta
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Glucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (p<0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines and growth factors as well as proteins involved in PGE2 and NO synthesis. It also blocked the IL-1-induced expression of matrix specific proteases such as MMPs -3,-9,-10,-12 and ADAMTS-1.

Publication Title

Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta.

Sample Metadata Fields

Age

View Samples
accession-icon GSE33513
T cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Although transcriptional programs associated with T-cell specification and commitment have been described, the functional hierarchy and the roles of key regulators in structuring/ orchestrating these programs remain unclear. Activation of Notch signaling in uncommitted precursors by the thymic stroma initiates the T-cell differentiation program. One regulator first induced in these precursors is the DNA binding protein Tcf-1, a T-cell specific mediator of Wnt signaling. Yet the specific contribution of Tcf-1 to early T-cell development and the signals inducing it in these cells remain unclear. Here we assign functional significance to Tcf-1 as a gatekeeper of T-cell fate. We show that Tcf-1 is directly activated by Notch signals. Tcf-1 is required at the earliest phase of Tcell determination for progression beyond the early thymic progenitor (ETP) stage. The global expression profile of Tcf-1 deficient progenitors indicates that basic processes of DNA metabolism are downregulated in its absence and the blocked T-cell progenitors become abortive and die by apoptosis. Our data thus add an important functional relationship to the roadmap of T-cell development.

Publication Title

T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32311
Harnessing of the Nucleosome Remodeling Deacetylase complex controls lymphocyte development and prevents leukemogenesis
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cell fate decisions depend on the interplay between chromatin regulators and transcription factors. Here we show that activity of the Mi-2u Nucleosome Remodeling and Deacetylase (NuRD) complex is controlled by the Ikaros family of lymphoid-lineage determining proteins. Ikaros, an integral component of the NuRD complex in lymphocytes, tethers this complex to active lymphoid differentiation genes, but keeps it in a functionally-poised state. Loss in Ikaros DNA binding activity causes a local increase in Mi-2u chromatin remodeling, histone deacetylation and suppression of lymphoid gene expression. The NuRD complex also redistributes to transcriptionally-poised non-Ikaros gene targets, involved in proliferation and metabolism, inducing their re-activation. Thus release of NuRD from Ikaros regulation blocks lymphocyte maturation and mediates progression to a leukemic state by engaging functionally-opposing epigenetic mechanisms and genetic networks.

Publication Title

Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP106053
Immune-Responsive Gene 1 expression in myeloid cells prevents neutrophil mediated immunopathology during Mycobacterium tuberculosis infection, in vitro neutrophils data
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1 KO mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1 KO but not WT mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1 flox, MPR8-Cre Irg1 flox, and CD11c-Cre Irg1 flox conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in alveolar macrophages and LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA-seq analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, Irg1 modulates inflammation to curtail Mtb-induced lung disease. Overall design: Neutrophils were purified from bone marrow of naïve mice by negative selection using magnetic-activated cell sorting beads (Miltenyi). Neutrophil purity (>95%) was assessed by flow cytometry as the percentage of Ly6G+ CD11b+ cells. Neutrophils were cultured in RPMI-1640 supplemented with 1% non-essential amino acids at 37°C, 5% CO2. GFP-Mtb was grown to mid-log phase, washed with PBS, sonicated to disperse clumps, and resuspended in neutrophil culture media. GFP-Mtb then was opsonized prior to infection by mixing with an equal volume of normal mouse sera (Sigma) and incubation at room temperature for 30 min. Neutrophils were mock-infected or infected with opsonized GFP-Mtb at MOI 1 and incubated at 37°C, 5% CO2.

Publication Title

<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon SRP126934
Immune-Responsive Gene 1 expression in myeloid cells prevents neutrophil mediated immunopathology during Mycobacterium tuberculosis infection [macrophage]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1-/- mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1-/- but not WT mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1fl/fl, MPR8-Cre Irg1fl/fl, and CD11c-Cre Irg1fl/fl conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in alveolar macrophages and LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA-seq analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, Irg1 modulates inflammation to curtail Mtb-induced lung disease. Overall design: Macrophages were obtained by culturing bone marrow cells in RPMI-1640 (Invitrogen) supplemented with 10% heat inactivated fetal bovine serum, 2 mM L-glutamine, 1% non-essential amino acids, 100 U penicillin per mL, 100 µg streptomycin per mL, and 22 ng M-CSF (Peprotech) per ml for 6 days at 37°C, 5% CO2. Fresh media was added on day 3 of culture. After 6 days of culture, non-adherent cells were discarded. Adherent macrophages were switched into antibiotic-free media and seeded at 105 cells per well and 9 x 105 cells per well in tissue culture-treated 96 and 6 well plates respectively. In some cases, macrophages were treated with 0.25 mM itaconic acid (Sigma) for 12 h prior to inoculation with Mtb. Mtb was grown to mid-log phase, washed with PBS, sonicated to disperse clumps, and resuspended in antibiotic-free macrophage culture media. Macrophage cultures were inoculated by adding Mtb-containing media at a multiplicity of infection (MOI) of 1 and centrifuging for 10 min at 200 x g. Cells were washed twice with PBS to remove unbound Mtb, fresh culture media was added, and cells were incubated at 37°C, 5% CO2. In some cases culture media was supplemented with 0.25 mM itaconic acid.

Publication Title

<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP106055
Immune-Responsive Gene 1 expression in myeloid cells prevents neutrophil mediated immunopathology during Mycobacterium tuberculosis infection, in vivo neutrophil data
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1 KO mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1 KO but not WT mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1 flox, MPR8-Cre Irg1 flox, and CD11c-Cre Irg1 flox conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in alveolar macrophages and LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA-seq analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, Irg1 modulates inflammation to curtail Mtb-induced lung disease. Overall design: C57BL/6N (WT) mice were purchased from Charles River. B6.SJL (CD45.1) mice were obtained from Jackson Laboratories. Irg1-/- mice (embryonic stem cells obtained from KOMP (C57BL/6N background), MGI: 103206) were generated at Washington University. Adult mice (6-13 weeks of age) of both sexes were used, and sex was randomized between experiments. Neutrophils were purified by magnetic-activated cell sorting from the bone marrow of naïve mice (negative selection) or the lungs of Mtb-infected mice at 16 dpi (selection for Ly6G+ cells) (Miltenyi).

Publication Title

<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact