refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 778 results
Sort by

Filters

Technology

Platform

accession-icon GSE24434
Host cell transcriptome response to expression of the human cytomegalovirus (hCMV) 72-kDa immediate-early 1 (IE1) protein
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-gamma and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-gamma-responsive promoters. However, neither synthesis nor secretion of IFN-gamma or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity.

Publication Title

Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-γ.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE49194
Expression data from neurospheres derived from the neocortex, striatum and subventricular zones of the adult mouse brain
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Differential gene expression profiles of neurospheres derived from different regions of the adult brain.

Publication Title

Environmental impact on direct neuronal reprogramming in vivo in the adult brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE99941
Effects of PPARgamma-inactive Delta-2-TGZ on breast cancer cells MCF-7
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

TGZ is an agonist of the nuclear receptor PPARgamma. This synthetic compound displays anticancer effects on breast cancer cells but some of them are PPARgamma independent. Delta-2-TGZ (delta-2-troglotazone) is a PPARgamma inactive TGZ derivative possessing a double bond adjoining the thiazolidinedione ring. This compound still displays anticancer efefcts. It is an interesting tool to study the PPARgamma-independent mechanisms.

Publication Title

Pro-apoptotic effect of Δ2-TGZ in "claudin-1-low" triple-negative breast cancer cells: involvement of claudin-1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE14538
Effect of mesalazine on Caco2 cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Several reports indicate that mesalazine (5-aminosalicylic acid or 5-ASA) is a promising candidate for the chemoprevention of Colo-Rectal Cancer (CRC) due to its ability to reach the purpose, yet avoiding at the same time the side effects that are usually determined by prolonged administrations of Non Steroidal Anti-Inflammatory Drugs. This activity of 5-ASA is probably the consequence of a number of effects determined on colon cancer cells and consisting of reduced proliferation, increased apoptosis and activation of cell cycle checkpoints. A recent observation has suggested that these effects could be mediated by the capacity of 5-ASA to interfere with the nuclear translocation of beta-catenin, in turn responsible for the inhibition of its transcription activity. The aim of our study was to better characterize the molecular mechanism by which 5-ASA inhibits the beta-catenin signaling pathway. To address this issue we assessed, by means of the Affymetrix microarray methodology, the transcriptome changes determined on Caco2 cells by a 96 h treatment with 20 mM mesalazine.

Publication Title

Mesalazine inhibits the beta-catenin signalling pathway acting through the upregulation of mu-protocadherin gene in colo-rectal cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47122
Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To investigate the time-dependent and coordinated sequence of inflammation-related events, and the dynamic features of macrophage polarisation/activation, we build and validated an in vitro model based on primary human monocytes

Publication Title

Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15970
Differentially Expressed Genes between Drought-tolerant and Drought-sensitive Barley Genotypes
  • organism-icon Hordeum vulgare
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at transcription levels in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme (NADP-ME) and pyruvate dehydrogenase (PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase (CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase (ALDH), ascorbate-dependant oxidoreductase (ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8 (HSP17.8) and dehydrin 3 (DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were likely constitutively expressed in drought-tolerant genotypes. Among them, 7 known annotated genes might enhance drought tolerance through signaling (such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP), anti-senescence (G2 pea dark accumulated protein GDA2) and detoxification (glutathione S-transferase (GST) pathways. In addition, 18 genes, including those encoding l-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C) and several chaperones, were differentially expressed in all genotypes under drought; thus, they were more likely general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.

Publication Title

Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE15072
Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Several reports have focused on the identification of biological elements involved in the development of abnormal systemic biochemical alterations in chronic kidney disease, but this abundant literature results most of the time fragmented. To better define the cellular machinery associated to this condition, we employed an innovative high-throughput approach based on a whole transcriptomic analysis and classical biomolecular methodologies. The genomic screening of peripheral blood mononuclear cells revealed that 44 genes were up-regulated in both chronic kidney disease patients in conservative treatment (CKD, n=9) and hemodialysis (HD, n=17) compared to healthy subjects (NORM) (p<0.001, FDR=1%). Functional analysis demonstrated that 11/44 genes were involved in the oxidative phosphorylation system (OXPHOS). Western blotting for COXI and COXIV, key constituents of the complex IV of OXPHOS, performed on an independent testing-group (12 NORM, 10 CKD and 14 HD) confirmed the elevated synthesis of these subunits in CKD/HD patients. However, complex IV activity was significantly reduced in CKD/HD patients compared to NORM (p<0.01). Finally, CKD/HD patients presented higher reactive oxygen species and 8-hydroxydeoxyguanosine levels compared to NORM. Taken together these results suggest, for the first time, that CKD/HD patients may have an impaired mitochondrial respiratory system and this condition may be both the consequence and the cause of an enhanced oxidative stress.

Publication Title

Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
accession-icon GSE12396
Vitamin D3/Hoxa10 pathway supports Mafb function during the monocyte differentiation of human CD34++ hematopoietic cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hematopoiesis, the conclusions of such studies are quite controversial since they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion while, in others, implicate this transcription factor in the induction of monocyte - macrophage differentiation. To clarify this issue we analyzed the biological effects and the transcriptome changes determined in human primary CD34+ hematopoietic progenitors by retroviral transduction of a full length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of MafB gene, recently identified as master regulator of such maturation pathway. By using a combined approach based on computational analysis, EMSA experiments and luciferase assays, we were able to demonstrate the presence of a Hox-A10 binding site in the promoter region of the MafB gene, which suggested the likely molecular mechanism underlying the observed effect. Interestingly, stimulation of the same cells with the Vitamin D3 monocyte differentiation inducer resulted in a clear increase of Hox-A10 and MafB transcripts, indicating the existence of a precise transactivation cascade involving VDR, Hox-A10 and MafB transcription factors. Altogether these data allow to conclude that the Vitamin D3 / Hox-A10 pathway supports MafB function during the induction of monocyte differentiation.

Publication Title

The vitamin D3/Hox-A10 pathway supports MafB function during the monocyte differentiation of human CD34+ hemopoietic progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23674
Expression data from human colon cancer cell line HCT116 with NFX1-91 knockdown and control cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

NFX1-91, a novel E6 cellular downstream target, functions as a transcriptional regulator and is involved in repressing hTERT expression. Other functions and downstream targets regulated by NFX1-91 were not well understood. We used microarrays to determine gene expression deregulated when NFX1-91 was knocked down.

Publication Title

NFX1 plays a role in human papillomavirus type 16 E6 activation of NFkappaB activity.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE9429
Identification of biological markers of sensitivity to high-clinical-risk-adapted therapy for DLBCL patients
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Diffuse large B-cell lymphoma (DLBCL) has striking clinical and molecular variability. Although a more precise identification of the multiple determinants of this variability is still under investigation, there is a consensus that high-clinical-risk DLBCL cases require a risk-adapted therapy, since intensification of chemotherapy with autologous stem-cell transplantation (ASCT) has been shown to improve the prognosis for high-risk patients in randomised clinical trials.

Publication Title

Identification of biological markers of sensitivity to high-clinical-risk-adapted therapy for patients with diffuse large B-cell lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact