refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 206 results
Sort by

Filters

Technology

Platform

accession-icon GSE68001
In vitro activation and reversion of human primary hepatic stellate cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Liver fibrosis is characterized by the excessive formation and accumulation of matrix proteins as a result of wound healing in the liver. A main event during fibrogenesis is the activation of the liver resident quiescent hepatic stellate cell (qHSC). Recent studies suggest that reversion of the activated HSC (aHSC) phenotype into a quiescent-like phenotype could be a major cellular mechanism underlying fibrosis regression in the liver, thereby offering new therapeutic perspectives for the treatment of liver fibrosis. The goal of the present study is to identify experimental conditions that can revert the activated status of human HSCs and to map the molecular events associated with this phenotype reversion by gene expression profiling

Publication Title

In vitro reversion of activated primary human hepatic stellate cells.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE31212
Mammary carcinomas in WAP-SV40 transgenic mice
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.

Sample Metadata Fields

Specimen part, Disease stage, Time

View Samples
accession-icon GSE29117
Mammary carcinomas in WAP-SV40 transgenic mice [gene expression]
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transgenic expression in mice of two synergistically acting SV40 early region encoded proteins, large (LT) and small (sT) tumor antigens, in the mammary epithelium recapitulates loss of p53 and Rb function and deregulation of PP2A-controlled mitogenic pathways in human breast cancer. In primiparous mice, WAP-promoter driven expression of SV40 proteins induces well and poorly differentiated mammary adenocarcinomas. We performed a correlative aCGH and gene expression analysis of 25 monofocal tumors, representing four histopathological grades, to explore the molecular traits of SV40-induced mammary tumors and to emphasize the relevance of this tumor model for human breast tumorigenesis.

Publication Title

Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE33038
Involuted normal mammary gland in WAP-SV40 transgenic mice [gene expression]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transgenic expression in mice of two synergistically acting SV40 early region encoded proteins, large (LT) and small (sT) tumor antigens, in the mammary epithelium recapitulates loss of p53 and Rb function and deregulation of PP2A-controlled mitogenic pathways in human breast cancer. In primiparous mice, WAP-promoter driven expression of SV40 proteins induces well and poorly differentiated mammary adenocarcinomas. We performed a correlative aCGH and gene expression analysis of 25 monofocal tumors, representing four histopathological grades, to explore the molecular traits of SV40-induced mammary tumors and to emphasize the relevance of this tumor model for human breast tumorigenesis.

Publication Title

Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE11511
Identification of histone codes and crosstalk in fission yeast
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Aims: To map histone modifications with unprecedented resolution both globally and locus-specifically, and to link modification patterns to gene expression. Materials & methods: Using correlations between quantitative mass spectrometry and chromatin immunoprecipitation/microarray analyses, we have mapped histone post-translational modifications in fission yeast (Schizosaccharomyces pombe). Results: Acetylations at lysine 9, 18 and 27 of histone H3 give the best positive correlations with gene expression in this organism. Using clustering analysis and gene ontology search tools, we identified promoter histone modification patterns that characterize several classes of gene function. For example, gene promoters of genes involved in cytokinesis have high H3K36me2 and low H3K4me2, whereas the converse pattern is found ar promoters of gene involved in positive regulation of the cell cycle. We detected acetylation of H4 preferentially at lysine 16 followed by lysine 12, 8 and 5. Our analysis shows that this H4 acetylation bias in the coding regions is dependent upon gene length and linked to gene expression. Our analysis also reveals a role for H3K36 methylation at gene promoters where it functions in a crosstalk between the histone methyltransferase Set2KMT3 and the histone deacetylase Clr6, which removes H3K27ac leading to repression of transcription. Conclusion: Histone modification patterns could be linked to gene expression in fission yeast.

Publication Title

Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51882
Early Mouse Hepatic Stellate Cell Activation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Early during culture of primary mouse HSCs gene expression changes.

Publication Title

Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP076334
Identification of rare, dormant and therapy resistant stem cells in acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 228 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche. Overall design: Gene expression profiles from two PDX ALL Samples (ALL-199 & ALL-265) were generated for either dormant (LRC) vs. dividing (non-LRC) cells or drug treated vs. non-treated cells. For single cell analysis one mouse were analyzed for each condition.

Publication Title

Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE49995
Gene expression profiling and secretome analysis differentiate Adult-Derived Human Liver Stem/progenitor Cells and human hepatic stellate cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Adult-derived human liver stem/progenitor cells (ADHLSC) are obtained after primary culture of the liver parenchymal fraction. The cells are of fibroblastic morphology and exhibit a hepato-mesenchymal phenotype. Hepatic stellate cells (HSC) derived from the liver non-parenchymal fraction present a comparable morphology as ADHLSC. Because both ADHLSC and HSC are described as liver stem/progenitor cells, we strived to extensively compare both cell populations at different levels and to propose tools demonstrating their singularity.

Publication Title

Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE153703
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.

Publication Title

The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE138086
Expression data from SAN tissue of WT and HCN4FEA mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

HCN4 channels are the major HCN channel isoform expressed in the sinoatrial node (SAN) and play a key role in cardiac pacemaking. We have characterized the gene expression profile in the SAN of adult mice expressing cAMP-insensitive HCN4 channels (HCN4FEA mice) in comparison to WT mice.

Publication Title

cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact