refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 137 results
Sort by

Filters

Technology

Platform

accession-icon GSE59673
Gene expression analysis of ectopic cyclin D1-expressing myeloma cells compared to their non expressing counterparts
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We analyzed gene expression profiles of myeloma cells belonging to the group of bas prognosis RPMI 8226 and LP1 expressing either the GFP protein or a cyclin D1-GFP fusion protein

Publication Title

Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE29522
Expression data from human CD34+ HPC subpopulations isolated from umbilical cord blood (Haddad et al. Blood 104:3918, 2004)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We used microarrays to analyze the gene expression profile of CD34+CD45RA+CD7+, CD34+CD45RA+CD10+CD19- and CD34+CD45+CD7-CD10-CD19- HPCs isolated from umbilical cord blood

Publication Title

Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34714
Routine use of microarray-based gene expression profiling to identify patients with low cytogenetic risk acute myeloid leukemia: accurate results can be obtained even with suboptimal samples. (test samples)
  • organism-icon Homo sapiens
  • sample-icon 117 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Background: Gene expression profiling has shown its ability to identify with high accuracy low cytogenetic risk acute myeloid leukemia such as acute promyelocytic leukemia and leukemias with t(8;21) or inv(16). The aim of this gene expression profiling study was to evaluate to what extent suboptimal samples with low leukemic blast load (range, 2-59%) and/or poor quality control criteria could also be correctly identified. Methods: Specific signatures were first defined so that all 71 acute promyelocytic leukemia, leukemia with t(8;21) or inv(16)-AML as well as cytogenetically normal acute myeloid leukemia samples with at least 60% blasts and good quality control criteria were correctly classified (training set). The classifiers were then evaluated for their ability to assign to the expected class 111 samples considered as suboptimal because of a low leukemic blast load (n=101) and/or poor quality control criteria (n=10) (test set). Results: With 10-marker classifiers, all training set samples as well as 97 of the 101 test samples with a low blast load, and all 10 samples with poor quality control criteria were correctly classified. Regarding test set samples, the overall error rate of the class prediction was below 4 percent, even though the leukemic blast load was as low as 2%. Sensitivity, specificity, negative and positive predictive values of the class assignments ranged from 91% to 100%. Of note, for acute promyelocytic leukemia and leukemias with t(8;21) or inv(16), the confidence level of the class assignment was influenced by the leukemic blast load. Conclusion: Gene expression profiling and a supervised method requiring 10-marker classifiers enable the identification of favorable cytogenetic risk acute myeloid leukemia even when samples contain low leukemic blast loads or display poor quality control criterion.

Publication Title

Routine use of microarray-based gene expression profiling to identify patients with low cytogenetic risk acute myeloid leukemia: accurate results can be obtained even with suboptimal samples.

Sample Metadata Fields

Time

View Samples
accession-icon GSE34823
Routine use of microarray-based gene expression profiling to identify patients with low cytogenetic risk acute myeloid leukemia: accurate results can be obtained even with suboptimal samples
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Routine use of microarray-based gene expression profiling to identify patients with low cytogenetic risk acute myeloid leukemia: accurate results can be obtained even with suboptimal samples.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE94648
Expression data from peripheral whole blood of non-IBD controls, CD and UC patients
  • organism-icon Homo sapiens
  • sample-icon 95 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Ulcerative colitis (UC) is a chronic inflammatory disease of the colon with preiods of active disease followed by remission.

Publication Title

Usefulness of Transcriptional Blood Biomarkers as a Non-invasive Surrogate Marker of Mucosal Healing and Endoscopic Response in Ulcerative Colitis.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage, Treatment

View Samples
accession-icon GSE39910
Bromodomain-dependent stage-specific male genome programming by Brdt
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Bromodomain-dependent stage-specific male genome programming by Brdt.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39909
Bromodomain-dependent stage-specific male genome programming by Brdt [Illumina BeadArray]
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Male germ cell differentiation is a highly regulated multistep process initiated by the commitment of progenitor cells into meiosis and characterized by major chromatin reorganizations in haploid spermatids. We report here that a single member of the double bromodomain BET factors, Brdt, is a master regulator of both meiotic divisions and post-meiotic genome repackaging. Upon its activation at the onset of meiosis, Brdt drives and determines the developmental timing of a testis-specific gene expression program. In meiotic cells, Brdt initiates a genuine histone acetylation-guided programming of the genome by activating essential meiotic genes and repressing a progenitor cells gene expression program, while priming a post-meiotic gene group for further activation. At post-meiotic stages, a global chromatin hyperacetylation gives the signal for Brdts first bromodomain to direct the genome-wide replacement of histones by transition proteins. Brdt is therefore a unique and essential regulator of male germ cell differentiation, which, by using various domains in a developmentally controlled manner, first drives a specific spermatogenic gene expression program, and later controls the tight packaging of the male genome.

Publication Title

Bromodomain-dependent stage-specific male genome programming by Brdt.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE70315
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP059915
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells [Atad2_ES_RNAseq_BI]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Although the conserved AAA ATPase – bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics and RNA-seq experiments in embryonic stem cells, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells, Atad2 becomes critical in sustaining specific gene expression programs, controlling proliferation and differentiation. Altogether, this work defines Atad2’s function as a facilitator of general chromatin-templated activities such as transcription. Overall design: We used a siRNA approach to knock-down Atad2 and measure the resulting variations in gene expression by RNA-seq

Publication Title

Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69899
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells [Microarray transcriptomic analysis]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Although the conserved AAA ATPase bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics and RNA-seq experiments in embryonic stem cells, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells, Atad2 becomes critical in sustaining specific gene expression programs, controlling proliferation and differentiation. Altogether, this work defines Atad2s function as a facilitator of general chromatin-templated activities such as transcription.

Publication Title

Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact