refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 137 results
Sort by

Filters

Technology

Platform

accession-icon GSE59110
Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male Infertility
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE41173
Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male Infertility [Affymetrix]
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The exposure of a gestating female during the period of gonadal sex determination has been shown to promote sperm epimutations, differential DNA methylation regions (DMR), that transmit transgenerational disease to subsequent generations. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, a spermatogenic cell apoptosis was observed. The Sertoli cells that provide the physical and nutritional support for the spermatogenic cells were isolated and alterations in gene expression examined. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific signaling pathways and cellular processes were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified in the vinclozolin F3 generation Sertoli cell. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that then has a role in the adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE59511
Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and Subsequent Germline
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE59278
Environmentally induced epigenetic transgenerational inheritance of ovarian disease
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of ovarian disease.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE43559
Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and Subsequent Germline [Affymetrix]
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germline is associated with primordial germ cell development and during fetal gonadal sex determination. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation primordial germ cell transcriptome and epigenome (DNA methylation) was altered transgenerationally. Interestingly, the differential DNA methylation regions (DMR) and altered transcriptomes were distinct between the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DMR and transcriptional alterations were observed in the E13 PGC than E16 germ cells. Observations demonstrate an altered transgenerational epigenetic reprogramming and function of the primordial germ cells and subsequent male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

Publication Title

Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE33423
Environmental Toxicants Induce Epigenetic Transgenerational Inheritance of Ovarian Disease [Affymetrix]
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

The epigenetic transgenerational actions of environmental toxicants and relevant mixtures on ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1, F2 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling premature ovarian failure (POF). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states were induced by different classes of environmental compounds suggesting a role of environmental epigenetics in ovarian disease etiology.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of ovarian disease.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP042219
Differential expression of genes associated with prenatal protein under-nutrition by albumen removal in the chicken
  • organism-icon Gallus gallus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Previously, long-term effects on body weight and reproductive performance have been demonstrated in the chicken model of prenatal protein undernutrition by albumen removal. Introduction of such persistent alterations in phenotype suggests stable changes in gene expression. A genome-wide screening for differences in hepatic transcriptome by RNA-Seq was performed in adult Isa Brown hens (55 weeks of age). Albumen-deprived hens were created by removal of 3 ml of the albumen from fertilized eggs and replacement with saline early during embryonic development (embryonic day 1). Results were compared to mock-treated sham hens and non-treated control hens. Correlation between relative expression levels obtained from the RNA-Seq and qPCR results was very high (Pearson’s correlation coefficiënt = 0.85), confirming the validity of the RNA-Seq results. In addition, after expansion of the sample size, 7 out of 15 selected genes demonstrated the same significant gene expression differences in the qPCR as in the RNA-Seq dataset, and were thus biologically confirmed. Grouping of the differentially expressed (DE) genes according to biological functions revealed the involvement of processes such as ‘embryonic and organismal development’, ‘organ morphology’, ‘organ and tissue development’, ‘reproductive system development and function’. Molecular pathways that were altered were ‘amino acid metabolism’, ‘molecular transport’, ‘small molecule biochemistry’, ‘cell death and survival’, ‘cell-to-cell signaling and interaction’, ‘carbohydrate metabolism’ and ‘protein synthesis’. In conclusion, the present results demonstrated for the first time that prenatal protein undernutrition by albumen removal leads to long-term alterations of the hepatic transcriptome in the chicken. Overall design: 3 biological replicates per group (control, sham, albumen-deprived) were analyzed

Publication Title

Differential Expression of Genes and DNA Methylation associated with Prenatal Protein Undernutrition by Albumen Removal in an avian model.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP048804
Identifying genes regulated by Kruppel-like factor-9 by RNA-seq in human glioblastoma stem cells.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Kruppel-like factor-9 (KLF9), a member of the large KLF transcription factor family, has emerged as a regulator of oncogenesis, cell differentiation and neural development; however, the molecular basis for KLF9’s diverse contextual functions remains unclear. This study focuses on the functions of KLF9 in human glioblastoma stem-like cells. We establish for the first time a genome-wide map of KLF9-regulated targets in human glioblastoma stem-like cells, and show that KLF9 functions as a transcriptional repressor and thereby regulates multiple signaling pathways involved in oncogenesis and stem cell regulation. A detailed analysis of one such pathway, integrin signaling, shows that the capacity of KLF9 to inhibit glioblastoma cell stemness and tumorigenicity requires ITGA6 repression. These findings enhance our understanding of the transcriptional networks underlying cancer cell stemness and differentiation, and identify KLF9-regulated molecular targets applicable to cancer therapeutics. Overall design: Two cell lines were used as biological replicates. Each cell line has one KLF9 induction sample and one control sample.

Publication Title

Kruppel-like factor-9 (KLF9) inhibits glioblastoma stemness through global transcription repression and integrin α6 inhibition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE134614
Expression data from betalains treated C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconAffymetrix C. elegans Gene 1.1 ST Array

Description

Effects of betalains in C. elegans gene expression is studied, as our previous results showed a lifespan extension effect produced by theses molecules

Publication Title

Betalain health-promoting effects after ingestion in Caenorhabditis elegans are mediated by DAF-16/FOXO and SKN-1/Nrf2 transcription factors.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE109070
rGal1 transcriptional effects over RWP-1
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

rGal1 (recombinant Galectin-1) vs non treated (Ctrl) pancreatic cancer cell line RWP-1

Publication Title

Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact