refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon GSE9013
Expression data from side-population sorted putative intestinal stem cells.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

While the existence of intestinal epithelial stem cells (IESCs) has been well established, their study has been limited due to the inability to isolate them. Previous work has utilized side population (SP) sorting of the murine small intestinal mucosa to isolate a viable fraction of cells enriched for putative IESCs. We have used microarray analyses to characterize the molecular features of this potential stem cell population.

Publication Title

Molecular properties of side population-sorted cells from mouse small intestine.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6476
Effect of chronic fluoxetine treatment on hippocampal gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Both the mechanism of action and the factors determining the behavioral response to antidepressants are unknown. It has been shown that antidepressant treatment promotes the proliferation and survival of hippocampal neurons via enhanced serotonergic signaling, but it is still unclear whether hippocampal neurogenesis is responsible for the behavioral response to antidepressants. Furthermore, a large subpopulation of patients fails to respond to antidepressant treatment due to presumed underlying genetic factors. In the present study, we have used the phenotypic and genotypic variability of inbred mouse strains to show that there is a genetic component to both the behavioral and neurogenic effects of chronic fluoxetine treatment, and that this antidepressant induces an increase in hippocampal cell proliferation only in the strains that also show a positive behavioral response to treatment. The behavioral and neurogenic responses are associated with an upregulation of genes known to promote neuronal proliferation and survival. These results suggest that inherent genetic predisposition to increased serotonin-induced neurogenesis is a determinant of antidepressant efficacy.

Publication Title

Genetic regulation of behavioral and neuronal responses to fluoxetine.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE82105
Molecular profiling of immune activation associated with regression of melanoma metastases induced by diphencyprone
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to treat cutaneous melanoma metastases with topical DPCP, and then to comprehensively study the induced immune responses associated with tumor regression.

Publication Title

Molecular Profiling of Immune Activation Associated with Regression of Melanoma Metastases Induced by Diphencyprone.

Sample Metadata Fields

Specimen part, Disease, Treatment, Subject, Time

View Samples
accession-icon GSE26315
Expression data from human amnion mesenchymal cells treated with interleukin-1-beta for 1hr and 8hr
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Premature birth continues to be a challenging pregnancy complication, and a body of literature indicates that inflammation can contribute to premature delivery by converting a receptive uterine environment to a hostile one. Cytokines have been demonstrated to provoke up-regulation of inflammatory genes (e.g. interleukin-1, 6, and 8, tumor necrosis factor-alpha, cyclooxygenase-2, and microsomal prostaglandin E synthase-1).

Publication Title

Inflammatory gene regulatory networks in amnion cells following cytokine stimulation: translational systems approach to modeling human parturition.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE45216
Key differences identified between actinic keratosis and cutaneous squamous cell carcinoma by transcriptome profiling
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cutaneous squamous cell carcinoma (cSCC) is one of the most common malignancies in fair skinned populations worldwide and its incidence is increasing. Despite previous observations of multiple genetic abnormalities in cSCC, the oncogenic process remains elusive. The purpose of this study was to investigate the transcriptomes of cSCC and actinic keratoses (AK), to elucidate key differences between precursor AK lesions and invasive carcinoma.

Publication Title

Key differences identified between actinic keratosis and cutaneous squamous cell carcinoma by transcriptome profiling.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE42677
Defining an invasion signature at the leading edge of cutaneous squamous cell carcinoma (SCC): IL-24 driven MMP-7 and MMP-13 expression.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Purpose: Primary cutaneous squamous cell carcinoma (SCC) can be an invasive cancer in skin and has the potential to metastasize. We aimed to define the cancer related molecular changes that distinguish non-invasive from invasive SCC.

Publication Title

Gene expression profiling of the leading edge of cutaneous squamous cell carcinoma: IL-24-driven MMP-7.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE52360
Distinct activation of positive and negative regulatory immune genes during an evolving T cell response to diphencyprone (DPCP) in human skin
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We sought to characterize delayed-type hypersensitivity (DTH) responses elicited by topical hapten DPCP in normal human skin

Publication Title

Molecular characterization of human skin response to diphencyprone at peak and resolution phases: therapeutic insights.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE30355
Human keratinocytes have a response to injury that upregulates CCL20 and other genes linking innate and adaptive immunity
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the early stages of wound healing, keratinocytes become activated and release inflammatory molecules such as interleukin-1 and interleukin-8 that are linked to innate immune responses and neutrophil recruitment. It is unclear, however, whether keratinocytes release molecules linked to adaptive immune responses, e.g. CCL20, in their early state of activation without signals from infiltrating T cells. This study aims to isolate the immediate alterations in protective and inflammatory gene expression that occur in epidermal keratinocytes, with a particular focus on molecules associated with cell-mediated immunity. We used dispase-separated epidermis, followed by intercellular disassociation by trypsinization, as a model for epidermal injury. We obtained a pure population of keratinocytes using flow cytometry. As a control for uninjured epidermis, we performed laser capture microdissection on normal human skin. Sorted keratinocytes had an early burst of upregulated gene expression, which included CCL20, IL-15, IL-23A, IFN-, and several antimicrobial peptides. Our results provide insight into the potential role of keratinocytes as contributors to cell-mediated inflammation, and expand knowledge about gene modulation that occurs during early wound healing. Our findings may be relevant to cutaneous diseases such as psoriasis, where micro-injury can trigger the formation of psoriatic plaques at the site of trauma.

Publication Title

Human keratinocytes' response to injury upregulates CCL20 and other genes linking innate and adaptive immunity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52361
IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: IL-17 is the defining cytokine of the Th17, Tc17, and T cell populations that plays a critical role in mediating inflammation and autoimmunity. Psoriasis vulgaris is an inflammatory skin disease mediated by Th1 and Th17 cytokines with relevant contributions of IFN-, TNF-, and IL-17. Despite the pivotal role IL-17 plays in psoriasis, and in contrast to the other key mediators involved in the psoriasis cytokine cascade that are capable of inducing broad effects on keratinocytes, IL-17 was demonstrated to regulate the expression of a limited number of genes in monolayer keratinocytes cultured in vitro.

Publication Title

IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE58033
Interleukin-32 is progressively expressed in Mycosis Fungoides independent of helper T-cell 2 and helper T-cell 9 polarization
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mycosis Fungoides (MF) is typically characterized by a mature CD4+ memory T-cell phenotype, and regarded as a helper T-cell (Th)2-skewed disease. Here, using skin samples from MF (n=21), healthy volunteers (n=17), atopic dermatitis (n=17), and psoriasis (n=9), we performed RT-PCR to show highest interleukin (IL)-32 mRNA expression in MF compared to benign inflammatory diseases, and its increasing expression with disease progression. By immunohistochemistry and immunofluorescence, we confirmed IL-32 protein expression by numerous CD3+CD4+ T-cells and some epidermotropic T-cells in MF lesions. IL-32 is expressed by MyLa cells (MF cell line) and promoted their proliferation and viability in a dose-dependent fashion. IL-32-treated MyLa and HH cells (CTCL cell line) showed upregulation of cell proliferation and survival genes. Of major 'polar' T-cell cytokines, only IFN- mRNA increases with MF progression and positively correlates with IL-32 mRNA expression levels. Th2 cytokines do not show consistent increases with MF progression nor positive correlation with IL-32 mRNA expression levels. Furthermore, by flow cytometry, IL-32 production by circulating activated T-cells in healthy individulas was found in IFN-+ and IFN-- cells but not in IL-4+ or IL-13+ cells. In conclusion, we identified IL-32+ cells as likely tumor cells in MF, and clearly showed that IL-32 mRNA expression levels increase with MF progression. We found that IL-32 mRNA expression levels in MF are significantly higher than those in other skin diseases, and that some IL-32+ T-cells are independent from defined Th subsets. Thus IL-32 may play a unique role in MF progression as an autocrine cytokine.

Publication Title

IL32 is progressively expressed in mycosis fungoides independent of helper T-cell 2 and helper T-cell 9 polarization.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact