refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon GSE36842
Progressive Activation of Th2/Th22 characterizes acute and chronic atopic dermatitis
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Atopic dermatitis (AD) is a common disease, with an increasing prevalence. The primary pathogenesis of the disease is still elusive, resulting in lack of specific treatments. The prevailing view is that AD is a biphasic, T-cell polarized disease, with Th2 predominating acute AD, and a switch to Th1 characterizing chronic disease. Identification of factors that participate in onset of lesions and maintenance of chronic lesions is critical for development of targeted therapeutics. We performed global genomic, molecular and cellular profiling of paired non-lesional, acute, and chronic skin biopsies from ten AD patients. Onset of acute lesions is associated with a striking increase in a subset of terminal differentiation proteins, specifically the IL-22-modulated S100A7-9. Correspondingly, acute disease is associated with significant increases in gene expression levels of the major Th22- (IL-22) and Th2- (IL-4, IL-31) cytokines and Th17-regulated genes (CCL20, PI3/Elafin), without significant changes in IL-17. A lesser induction of Th1- (IFN, MX-1, CXCL9-11) associated genes was detected in acute disease. Chronic skin lesions are characterized by significantly intensified activation of Th22, Th2 and Th1. Our data establish increased expression of S100A7-9 and other epidermal genes at onset of acute AD, with parallel activation of Th2 and Th22 cytokines. Our findings suggest an absence of switch mechanism in chronic disease and instead indicate that progression to chronic lesions is associated with intensified activation of immune axes that initiate onset of acute lesions, particularly Th22 and Th2. This alters the prevailing view of pathogenesis, with important therapeutic implications.

Publication Title

Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis.

Sample Metadata Fields

Age, Subject

View Samples
accession-icon SRP110257
Signaling strength determines proapoptotic functions of STING
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

T cells exhibit an intensified STING response, which leads to the expression of a distinct set of genes and results in the induction of apoptosis Overall design: CD4+ T cells were stimulated either with DMSO or 10-carboxymethyl-9-acridanone (CMA) for 16 hours. RNA was isolated for analysis.

Publication Title

Signalling strength determines proapoptotic functions of STING.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE20188
Expression data in response to neonicotinoid insecticides
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor which accepts chloropyridinyl- and chlorothiazolyl- analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been specifically defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA) associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl- neonicotinoids induce SA responses associated with enhanced stress tolerance.

Publication Title

Neonicotinoid insecticides induce salicylate-associated plant defense responses.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE56736
Genome wide expession analysis of mouse bone marrow derive macrophage (Bmdm) cell stimulated with cytokine and infected with mycobacterium tuberculosis
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Bmdm cells were differentiated for 10 days and harvested and culture in six well plate followed by cytokine stimulation after 24 hrs cells were infected with mycobacterium tuberculosis to identify the host factors involved in infection.

Publication Title

IL-4Rα-dependent alternative activation of macrophages is not decisive for Mycobacterium tuberculosis pathology and bacterial burden in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59210
Genome wide expression analysis of bone marrow derived macrophage cells (BMDMs) stimulated with IFNg and effect of Batf2 knockdown in BMDMs stimulated with IFNg
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59207
Genome wide expession analysis of mouse bone marrow derive macrophage (Bmdm) cell stimulated with IFNg
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Bmdm cells were differentiated for 10 days and harvested and culture in six well plate followed by cytokine stimulation

Publication Title

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59209
Genome wide expession analysis of effect of Batf2 knock down in bone marrow derived macrophage cells stimulated with IFNg
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Bmdm cells were differentiated for 10 days and harvested and culture in six well plate followed by transfection with Batf2 ShRNA.

Publication Title

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9013
Expression data from side-population sorted putative intestinal stem cells.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

While the existence of intestinal epithelial stem cells (IESCs) has been well established, their study has been limited due to the inability to isolate them. Previous work has utilized side population (SP) sorting of the murine small intestinal mucosa to isolate a viable fraction of cells enriched for putative IESCs. We have used microarray analyses to characterize the molecular features of this potential stem cell population.

Publication Title

Molecular properties of side population-sorted cells from mouse small intestine.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26051
Analysis of Human Tendinopathy Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chronic tendon injuries, also known as tendinopathy, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure and yet little is known about the molecular mechanism leading to tendinopathy. We have used histological evaluation and molecular profiling to determine the gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Diseased tendons have altered extracellular matrix, fiber disorientation, increased cellular content and vasculature and the absence of inflammatory cells. Global gene expression profiling identified 1783 transcripts with significant different expression patterns in the diseased tendons. Global pathway analysis further suggests altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. We have identified pathways and genes regulated in tendinopathy samples that will help contribute to the understanding of the disease towards the development of novel therapeutics.

Publication Title

Regulation of gene expression in human tendinopathy.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon SRP158162
Sox9-Meis1 inactivation is required for adipogenesis, advancing Pref-1+ to PDGFRa+ cells [GFP+ RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Adipocytes arise from commitment and differentiation of adipose precursors in white adipose tissue (WAT). In studying adipogenesis, precursor markers, including Pref-1 and PDGFRa, are used to isolate precursors from stromal vascular fraction of WAT, but the relationship among the markers is not known. Here, we used Pref-1 promoter-rtTA system in mice for labeling Pref-1+ cells and for inducible inactivation of Pref-1 target, Sox9. We show requirement of Sox9 for maintenance of Pref-1+ proliferative, early precursors. Upon Sox9 inactivation, these Pref-1+ cells become PDGFRa+ cells that express early adipogenic markers. Thus, we show for the first time that Pref-1+ cells precede PDGFRa+ cells in the adipogenic pathway and that Sox9 inactivation is required for WAT growth and expansion. Furthermore, we show that, in maintaining early adipose precursors, Sox9 activates Meis1 which prevents adipogenic differentiation. Our study also demonstrates the Pref-1 promoter-rtTA system for inducible gene inactivation in early adipose precursor population. Overall design: RNA-Sequencing for differentially expressed genes (more than 2-fold) between GFP+ (Pref-1+) ingWAT SVF cells from floxed and Sox9 PreASKO mice (n=6 pooled).

Publication Title

Sox9-Meis1 Inactivation Is Required for Adipogenesis, Advancing Pref-1<sup>+</sup> to PDGFRα<sup>+</sup> Cells.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact