refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 26 results
Sort by

Filters

Technology

Platform

accession-icon SRP021130
A Study of Small RNAs from Cerebral Neocortex of Pathology-Verified Alzheimer’s Disease, Dementia with Lewy Bodies, Hippocampal Sclerosis, Frontotemporal Lobar Dementia, and Non-Demented Human Controls
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

MicroRNAs (miRNAs) are small (20-22 nucleotides) regulatory non-coding RNAs that strongly influence gene expression. Most prior studies addressing the role of miRNAs in neurodegenerative diseases (NDs) have focused on individual controls (n = 2), AD (n = 5), dementia with Lewy bodies (n = 4), hippocampal sclerosis of aging (n = 4), and frontotemporal lobar dementia (FTLD) (n = 5) cases, together accounting for the most prevalent ND subtypes. All cases had short postmortem intervals, relatively high-quality RNA, and state-of-the-art neuropathological diagnoses. The resulting data (over 113 million reads in total, averaging 5.6 million reads per sample) and secondary expression analyses constitute an unprecedented look into the human cerebral cortical miRNome at single nucleotide resolution. While we find no apparent changes in isomiR or miRNA editing patterns in correlation with ND pathology, our results validate and extend previous miRNA profiling studies with regard to quantitative changes in NDs. In agreement with this idea, we provide independent cohort validation for changes in miR-132 expression levels in AD (n = 8) and FTLD (n = 14) cases when compared to controls (n = 8). The identification of common and ND-specific putative novel brain miRNAs and/or short-hairpin molecules is also presented. The challenge now is to better understand the impact of these and other alterations on neuronal gene expression networks and neuropathologies. Overall design: Using RNA deep sequencing, we sought to analyze in detail the small RNAs (including miRNAs) in the temporal neocortex gray matter from non-demented controls (n = 2), AD (n = 5), dementia with Lewy bodies (n = 4), hippocampal sclerosis of aging (n = 4), and frontotemporal lobar dementia (FTLD) (n = 5) cases, together accounting for the most prevalent ND subtypes.

Publication Title

A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer's disease, dementia with lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon SRP105369
Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets
  • organism-icon Homo sapiens
  • sample-icon 82 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Acute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30% of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells. Upregulated GPCRs are enriched in chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion (CD97, EMR1, EMR2 and GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs, such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1) and the Frizzled family receptors SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying different potential therapeutic targets in these frequent AML subgroups. Overall design: Total healthy bone marrow was sorted to isolate distinct cell populations. RNA-Seq analysis was performed on sorted cells to determine gene expression profile of healthy bona marrow subpopulations.

Publication Title

Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE52584
Gene and microRNA transcriptome analysis of Parkinson's related LRRK2 mouse models
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial and sporadic Parkinsons disease (PD). Here, we investigated in parallel gene and microRNA transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout mice, as well as mice expressinghuman LRRK2 wildtype (hLRRK2-WT) or PD-associated R1441G mutation (hLRRK2-R1441G).

Publication Title

Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20282
Gfi1 regulates survival and lineage commitment of hematopoietic precursors and prevents myeloproliferative diseases
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Hematopoietic stem cells (HSCs) and lymphoid-primed multi-potential progenitors (LMPPs) are able to initiate both lymphoid and myeloid differentiation. We show here that the transcriptional repressor Gfi1 (growth factor independence 1) implements a specific gene expression program in HSCs and LMPPs that is critical for their survival and lymphoid differentiation potential. We present evidence that Gfi1 is required to maintain expression of genes involved in lymphoid development such as Flt-3, IL7R, Ebf1, Rag1, CCR9 and Notch1 and controls myeloid lineage commitment by regulating expression of genes such as Hoxa9 or M-CSFR. Gfi1 also inhibits apoptosis in HSCs by repressing pro-apoptotic genes such as Bax or Bak. As a consequence, Gfi1-/- mice show defects in self renewal, survival and both myeloid and lymphoid development of HSCs and LMPPs. Co-expression of a Bcl-2 transgene can partially restore the function of HSCs in Gfi1-/- mice, but not the defects in early lymphoid development. Of interest, Gfi1-/- x Bcl-2 transgenic mice show an accelerated expansion of myeloid cells and succumb to a fatal myeloproliferative disease resembling chronic myelomonocytic leukemia (CMML). Our data show that Gfi1 protects HSCs against apoptosis, ensures the proper development of LMPPs and plays a role in the development of myeloid leukemia.

Publication Title

Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP056295
Leucegene: AML sequencing (part 5)
  • organism-icon Homo sapiens
  • sample-icon 523 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048759
Leucegene: AML sequencing (part 3)
  • organism-icon Homo sapiens
  • sample-icon 434 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033266
Leucegene: AML sequencing (part 2)
  • organism-icon Homo sapiens
  • sample-icon 144 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056197
Leucegene: AML sequencing (part 4)
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23847
Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The type III RNase Dicer is responsible for the maturation and function of microRNA (miRNA) molecules in the cell. It is now well documented that Dicer and the fine-tuning of the miRNA gene network are important for neuronal integrity. However, the underlying mechanisms involved in neuronal death, particularly in the adult brain, remain poorly defined. Here, we show that absence of Dicer in the adult forebrain is accompanied by a mixed neurodegenerative phenotype. While neuronal loss is observed in the hippocampus, cellular shrinkage is predominant in the cortex. Interestingly, neuronal degeneration coincides with the hyperphosphorylation of endogenous tau at several epitopes previously associated with neurofibrillary pathology. Transcriptome analysis of enzymes involved in tau phosphorylation identified ERK1 as one of the candidate kinases responsible for this event in vivo. We further demonstrate that miRNAs belonging to the miR-15 family are potent regulators of ERK1 expression in mouse neuronal cells and co-expressed with ERK1/2 in vivo. Last, we show that miR-15a is specifically downregulated in Alzheimers disease brain. In sum, these results support the hypothesis that changes in the miRNA network may contribute to a neurodegenerative phenotype by affecting tau phosphorylation.

Publication Title

Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74659
SCL and LMO1 reprogram thymocytes into self-renewing cells.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The SCL and LMO1 oncogenic transcription factors reprogram thymocytes into self-renewing pre-leukemic stem cells (pre-LSCs). Here we report that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1.

Publication Title

SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells.

Sample Metadata Fields

Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact