refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 109 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-475
Transcription profiling by array of Arabidopsis after treatment with glucose, mannose and abcissic acid
  • organism-icon Arabidopsis thaliana
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The aim of the experiment is to determine sugar and ABA responsive gene expression in Arabidopsis.

Publication Title

Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE25518
Testis developmental gene expression in cryptorchid boys at risk of azoospermia
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Despite timely and successful surgery, 32% of patients with bilateral and 10% with unilateral cryptorchidism will develop azoospermia. Cryptorchid boys at risk of azoospermia display a typical testicular histology of impaired mini-puberty at the time of the orchidopexy.

Publication Title

Testicular gene expression in cryptorchid boys at risk of azoospermia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE4737
HCaRG vs NEO
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Summary:

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2555
HCaRG-9 vs NEO-1
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A Array (hgu133a)

Description

HEK293 cells were transfected with control plasmid (pcDNAI/Neo;Invitrogen) or with the plasmid encoding HCaRG. Stable transfectants were synchronized and grown in the presence of 10% FBS for 48 h. Total RNAs were purified with the mini RNeasy kit (Qiagen).

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50380
Transcriptional and functional profiling of human intestinal dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This file contains gene microarray data from subsets of human intestinal dendritic cells, as defined by their expression of CD103 and Sirpa. This will allow for better understanding of human intestinal DC subsets in general and will facilitate translation from findings in the mouse.

Publication Title

Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54257
Drug-induced liver injury
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE54254
Expression data from human hepatocellular carcinoma cell line HepG2
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54256
Expression data from primary mouse hepatocytes treated with Diclofenac
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE54255
Gene expression data from precision cut human liver slices treated to diclofenac
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE47621
Interferon-gamma critically determines dendritic cell function
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A growing body of evidence suggests that inflammatory cytokines have a dualistic role in immunity. In this study, we sought to determine the direct effects IFN-gamma on the differentiation and maturation of human peripheral blood monocyte-derived dendritic cells (moDC). Here, we report that following differentiation of human peripheral-blood monocytes into moDCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4, interferon-gamma (IFN-gamma) induces moDC maturation and up-regulates the co-stimulatory markers CD80, CD86, CD95, and MHC Class I, enabling moDCs to effectively generate antigen-specific CD4+ and CD8+ T cell responses for multiple viral and tumor antigens. Interestingly, early exposure of monocytes to high concentrations of IFN-gamma promotes monocyte differentiation into macrophages, despite the presence of GM-CSF and IL-4. However, under low concentrations of IFN-gamma, monocytes continue to differentiate into dendritic cells possessing a unique gene-expression profile, resulting in impairments in subsequent maturation by IFN-gamma and an inability to generate effective antigen-specific CD4+ and CD8+ T cell responses compared to standard moDCs. Monocytes differentiated in the presence of low levels of IFN-gamma downregulate IFN-gamma receptor expression, impairing their response to an inflammatory rechallenge. These findings demonstrate the ability of IFN-gamma to impart differential programs on human moDCs which shape the antigen-specific T cell responses they induce. Timing and intensity of exposure to IFN-gamma can thus determine whether moDCs are tolerogenic or immunostimulating.

Publication Title

Timing and intensity of exposure to interferon-γ critically determines the function of monocyte-derived dendritic cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact