refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 169 results
Sort by

Filters

Technology

Platform

accession-icon GSE65005
Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Conditional knockout of Snai1 in the mouse intestinal epithlium results in apoptotic loss of crypt base columnar cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snail conditional knockout mice also undergo apoptosis when Snai1 is deleted.

Publication Title

Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP075822
Transcriptional analysis of Tfr suppression of Tfh and B cells by RNA-seq
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Tfh and B cells were cultured together with or without Tfr cells. After 4 days Tfh and B cells were sorted and prepared for 3'' targeted RNA-seq. Overall design: Examination of transcriptional changes upon suppression of Tfh and B cells.

Publication Title

Suppression by T<sub>FR</sub> cells leads to durable and selective inhibition of B cell effector function.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP075824
Transcriptional analysis of rescue of Tfr-mediated B cell suppression with IL-21
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Tfh and B cells were cultured together with or without Tfr cells and IL-21. After 4 days Tfh and B cells were sorted and prepared for 3'' targeted RNA-seq. Overall design: Examination of transcriptional changes upon IL-21 rescue of B cell suppression

Publication Title

Suppression by T<sub>FR</sub> cells leads to durable and selective inhibition of B cell effector function.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP002811
High resolution analysis of genomic imprinting in the embryonic and adult mouse brain AND Sex-specific imprinting in the mouse brain
  • organism-icon Mus musculus
  • sample-icon 183 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Genomic imprinting results in the preferential expression of the paternal, or maternal allele of certain genes. We have performed a genome-wide characterization of imprinting in the mouse embryonic and adult brain using F1 hybrid mice generated from reciprocal crosses of CASTEiJ and C57BL/6J mice. We also uncovered genes associated with sex specific parental effects in the adult mouse brain. Our study identified preferential selection of the maternally inherited X chromosome in glutamatergic neurons of the female cortex. Overall design: Examination of allele specific expression in the brains of reciprocal crosses of F1 hybrid mice from CASTEiJ and C57BL/6J crosses. Processed data files (GenomicAligned, SNP_calls, TranscriptomeAligned, fRNAdbAligned) and README file linked below as supplementary files.

Publication Title

Sex-specific parent-of-origin allelic expression in the mouse brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72162
Gene expression data from Zeb2WT, Zeb2KO, T-betWT and T-betKO effector CD8+ T cells during infection
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in EMT-dependent tumor metastasis. While the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is upregulated by activated T cells, specifically in the KLRG1hi effector CD8+ T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8+ T cells following primary and secondary infection with a severe impairment in the generation of the KLRG1hi effector-memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress CD127 and IL-2 in CD8+ T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box-sites in the ZEB2 gene and that T-bet and ZEB2 regulate similar gene-expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Taken together, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8+ T cells.

Publication Title

Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE31465
Expression data from sorted epithelial CD34+ expressing cells from DMBA/TPA induced skin tumors
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptional profile of control and VEGF overexpressing FACS-isolated CD34+ Cancer stem cells from DMBA/TPA induced skin tumours

Publication Title

A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066910
Temporal transcriptome analysis of control and Zeb2 knockout mESC in pluripotency and in neural differentiation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To capture the Zeb2-dependent transcriptional changes in early cell state/fate decisions we performed RNA-seq on Zeb2 control and Zeb2 knockout cells. We chose three stages, which correspond in control ESCs to the naive pluripotent state (d0; very low amounts of Zeb2 mRNA), multipotent progenitors (d4, low Zeb2 mRNA/protein) and early neural progenitors (d6, high Zeb2 mRNA/protein), respectively. Overall design: Three biological replicates of Zeb2 control (Ctrl) and Zeb2 knockout (KO) samples on day 0, day 4 and day 6 of neural differentiation were used in this study (18 samples in total)

Publication Title

Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE22766
Empty-vector control and transgenic 35S-PaWRKY1 Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional profiling of genes regulated by PaWRKY1 transcription factor

Publication Title

Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56321
SIRT4 KO livers microarray
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Sirtuins are a family of protein deacetylases, deacylases, and ADP-ribosyltransferases that regulate life span, control the onset of numerous age-associated diseases, and mediate metabolic homeostasis. We have uncovered a novel role for the mitochondrial sirtuin SIRT4 in the regulation of hepatic lipid metabolism during changes in nutrient availability. We show that SIRT4 levels decrease in the liver during fasting and that SIRT4 null mice display increased expression of hepatic peroxisome proliferator activated receptor (PPAR ) target genes associated with fatty acid catabolism. Accordingly, primary hepatocytes from SIRT4 knockout (KO) mice exhibit higher rates of fatty acid oxidation than wild-type hepatocytes, and SIRT4 overexpression decreases fatty acid oxidation rates. The enhanced fatty acid oxidation observed in SIRT4 KO hepatocytes requires functional SIRT1, demonstrating a clear cross talk between mitochondrial and nuclear sirtuins. Thus, SIRT4 is a new component of mitochondrial signaling in the liver and functions as an important regulator of lipid metabolism.

Publication Title

SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43176
Wild-Type Nras Lacks Tumor Suppressor Activity and Nras Oncogene Dosage Strongly Modulates Hematopoietic Transformation
  • organism-icon Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Contemporary treatment of pediatric acute myeloid leukemia (AML) requires the assignment of patients to specific risk groups. To explore whether expression profiling of leukemic blasts could accurately distinguish between the known risk groups of AML, we analyzed 130 pediatric and 20 adult AML diagnostic bone marrow or peripheral blood samples using the Affymetrix U133A microarray. Class discriminating genes were identified for each of the major prognostic subtypes of pediatric AML, including t(15;17)[PML-RARalpha], t(8;21)[AML1-ETO], inv(16) [CBFbeta-MYH11], MLL chimeric fusion genes, and cases classified as FAB-M7. When subsets of these genes were used in supervised learning algorithms, an overall classification accuracy of more than 93% was achieved. Moreover, we were able to use the expression signatures generated from the pediatric samples to accurately classify adult de novo AMLs with the same genetic lesions. The class discriminating genes also provided novel insights into the molecular pathobiology of these leukemias. Finally, using a combined pediatric data set of 130 AMLs and 137 acute lymphoblastic leukemias, we identified an expression signature for cases with MLL chimeric fusion genes irrespective of lineage. Surprisingly, AMLs containing partial tandem duplications of MLL failed to cluster with MLL chimeric fusion gene cases, suggesting a significant difference in their underlying mechanism of transformation. All the gene expression arrays are available through http://www.stjuderesearch.org/site/data/AML1/ in the original study (PMID:15226186). To study the RAS gene expression in the human AML patients, a total of 104 AML cases with known KRAS and NRAS status (including 72 gene expression arrays in the original study and 32 additional arrays acquired later on), as well as 4 CD34+ normal bone marrow cases deposited in GEO GSE33315, were including in this depository.

Publication Title

Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation.

Sample Metadata Fields

Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact