refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 169 results
Sort by

Filters

Technology

Platform

accession-icon GSE22766
Empty-vector control and transgenic 35S-PaWRKY1 Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional profiling of genes regulated by PaWRKY1 transcription factor

Publication Title

Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP075822
Transcriptional analysis of Tfr suppression of Tfh and B cells by RNA-seq
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Tfh and B cells were cultured together with or without Tfr cells. After 4 days Tfh and B cells were sorted and prepared for 3'' targeted RNA-seq. Overall design: Examination of transcriptional changes upon suppression of Tfh and B cells.

Publication Title

Suppression by T<sub>FR</sub> cells leads to durable and selective inhibition of B cell effector function.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP075824
Transcriptional analysis of rescue of Tfr-mediated B cell suppression with IL-21
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Tfh and B cells were cultured together with or without Tfr cells and IL-21. After 4 days Tfh and B cells were sorted and prepared for 3'' targeted RNA-seq. Overall design: Examination of transcriptional changes upon IL-21 rescue of B cell suppression

Publication Title

Suppression by T<sub>FR</sub> cells leads to durable and selective inhibition of B cell effector function.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE34389
Cell leukostasis during organ-targeted chemotherapy in human retinal endothelial cells and rhesus macaques endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34379
Carboplatin-treated human retinal endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Super-selective intra-ophthalmic artery chemotherapy (SSIOAC) is an organ-specific drug-delivery strategy to treat retinoblastoma, the most common primary ocular malignancy in children. Unfortunately, recent clinical reports associate adverse vascular toxicities with SSIOAC using melphalan, the most commonly used chemotherapeutic. To explore the reason for the unexpected vascular toxicities, we have developed in vitro studies with human retinal endothelial cells to test the effects of the chemotherapeutics and a non-human primate model to monitor the SSIOAC treatment in real-time and post-treatment. Melphalan and carboplatin (another chemotherapeutic used to treat retinoblastoma via SSIOAC) triggered migration, proliferation, and apoptosis when used to treat human retinal endothelial cells. Melphalan was associated with increased adhesion of leukocytes to human retinal endothelial cells, and tended to increase with increased cell expression of adhesion proteins (ICAM-1) and soluble chemotactic factors (IL-8). Histopathology post-SSIOAC indicated vessel wall sloughing, leukostasis, and vessel occlusion. We have established an in vitro human cell culture model and a non-human primate model to evaluate strategies designed to obviate vascular side effects, and optimize the efficacy of SSIAOC and the drug preparations used in SSIOAC.

Publication Title

Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34381
Melphalan-treated human retinal endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Super-selective intra-ophthalmic artery chemotherapy (SSIOAC) is an organ-specific drug-delivery strategy to treat retinoblastoma, the most common primary ocular malignancy in children. Unfortunately, recent clinical reports associate adverse vascular toxicities with SSIOAC using melphalan, the most commonly used chemotherapeutic. To explore the reason for the unexpected vascular toxicities, we have developed in vitro studies with human retinal endothelial cells to test the effects of the chemotherapeutics and a non-human primate model to monitor the SSIOAC treatment in real-time and post-treatment. Melphalan and carboplatin (another chemotherapeutic used to treat retinoblastoma via SSIOAC) triggered migration, proliferation, and apoptosis when used to treat human retinal endothelial cells. Melphalan was associated with increased adhesion of leukocytes to human retinal endothelial cells, and tended to increase with increased cell expression of adhesion proteins (ICAM-1) and soluble chemotactic factors (IL-8). Histopathology post-SSIOAC indicated vessel wall sloughing, leukostasis, and vessel occlusion. We have established an in vitro human cell culture model and a non-human primate model to evaluate strategies designed to obviate vascular side effects, and optimize the efficacy of SSIAOC and the drug preparations used in SSIOAC.

Publication Title

Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE65005
Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Conditional knockout of Snai1 in the mouse intestinal epithlium results in apoptotic loss of crypt base columnar cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snail conditional knockout mice also undergo apoptosis when Snai1 is deleted.

Publication Title

Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49067
Expression data from responders/nonresponders before/after receiving DLI for relapse of CML s/p BMT
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Increasing evidence across malignancies suggests that infiltrating T cells at the site of disease are crucial to tumor control. We hypothesized that marrow-infiltrating immune populations play a critical role in response to donor lymphocyte infusion (DLI), an established and potentially curative immune therapy whose precise mechanism remains unknown. We therefore analyzed marrow-infiltrating immune populations in 29 patients (22 responders, 7 nonresponders) with relapsed chronic myelogenous leukemia who received CD4+ DLI in the pre-tyrosine kinase inhibitor era.

Publication Title

Reversal of in situ T-cell exhaustion during effective human antileukemia responses to donor lymphocyte infusion.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP002811
High resolution analysis of genomic imprinting in the embryonic and adult mouse brain AND Sex-specific imprinting in the mouse brain
  • organism-icon Mus musculus
  • sample-icon 183 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Genomic imprinting results in the preferential expression of the paternal, or maternal allele of certain genes. We have performed a genome-wide characterization of imprinting in the mouse embryonic and adult brain using F1 hybrid mice generated from reciprocal crosses of CASTEiJ and C57BL/6J mice. We also uncovered genes associated with sex specific parental effects in the adult mouse brain. Our study identified preferential selection of the maternally inherited X chromosome in glutamatergic neurons of the female cortex. Overall design: Examination of allele specific expression in the brains of reciprocal crosses of F1 hybrid mice from CASTEiJ and C57BL/6J crosses. Processed data files (GenomicAligned, SNP_calls, TranscriptomeAligned, fRNAdbAligned) and README file linked below as supplementary files.

Publication Title

Sex-specific parent-of-origin allelic expression in the mouse brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44356
Expression data from wild-type and HMGN1 knockout mice injected with N-nitrosodiethylamine
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

HMGN1 contributes to the shortened latency of liver tumorigenesis by changing a chromatin structure and expression of relevant genes

Publication Title

Loss of the nucleosome-binding protein HMGN1 affects the rate of N-nitrosodiethylamine-induced hepatocarcinogenesis in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact