refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 342 results
Sort by

Filters

Technology

Platform

accession-icon SRP068159
Tumor suppressor role of Ezh2 in an NRASQ61K driven model of Early T-cell Precursor Acute Lymphoblastic Leukemia (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: To characterize transcriptional changes associated with homozygous inactivation the Polycomb Repressive Complex 2 (PRC2) lysine methyltransferase Ezh2 in a mouse model of earlt T-cell precursor ALL (ETP-ALL) Methods: We sequenced mRNA from NRASQ61K transformed murine LSK-cells co-transduced with a self-inactivating Cre-vector. Cells were sorted for Cre-expression (lox-stop-loxRosa26-YFP) or expression of an inert control vector (GFP) and differentiated on OP9DL1 stroma with and without a functional Ezh2 gene. Results: Inactivation of Ezh2 in this model leads to accelerated leukemia development. Resulting gene expression changes are complex and include enrichment of genes associated with immature hematopoietic cells, Ras signaling and Cytokines and their cognate receptors. Conclusions: Inactivation of Ezh2 in our model leads to accentuated expression of early hematopoietic gene expression programs and to accentuated growth and survival signaling. Overall design: Examination of mRNA levels between Ezh2ff and Ezh2ko in vivo, Ezh2ff and Ezh2ko in vitro.

Publication Title

Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP061148
Eed inactivation in Cdkn2a-null MLL-AF9 transformed cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced mRNA from MLL-AF9 transformed Cdkn2ako murine LSK-cells with and without a functional Eed locus Overall design: Comparison of mRNA levels between Eed_ff/Cdkn2ako and Eed_ko/Cdkn2ako cells in vitro

Publication Title

Inactivation of Eed impedes MLL-AF9-mediated leukemogenesis through Cdkn2a-dependent and Cdkn2a-independent mechanisms in a murine model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP068322
The Histone Methyltransferases MLL1 and DOT1L Cooperate with Meningioma-1 to Induce AML [Mouse Mll1 ko RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: To characterize transcriptional changes associated with homozygous inactivation of Dot1l or Mll1 in MN1 driven AML Methods: We sequenced mRNA from murine LSK-cells transformed using forced expression of MN1 (MSCV-MN1-IRES-GFP), and transduced with Cre-vector to inactivate either Dot1l or Mll1. Cells were sorted for Cre-expression (pTomato fluorescent marker) or expression of an inert control vector. Results: Inactivation of either Dot1l or Mll1 in this model leads to a substantial delay or complete abrogation of leukemia development.Loss of Dot1l or Mll1 are associated with gene expression changes that have substantial overlap. In addition, genes that are downregulated follwing inactivation of Dot1l or Mll1 have substantial overlap with the gene set upregulated in MN1 transduced CMPs. Conclusions: MN1 mediated leukemogenesis is associated with a gene expression program that dependes on Mll1 and Dot1l Overall design: Examination of mRNA levels between Dot1l f/f and Dot1l ko, and Mll1 f/f and Mll1 ko.

Publication Title

MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP068318
The Histone Methyltransferases MLL1 and DOT1L Cooperate with Meningioma-1 to Induce AML [Human RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: To characterize transcriptional changes associated with inhibition of Dot1l in 2 inv(16) patient AML samples Methods: We sequenced mRNA from patient samples that were exposed to 5 uM EPZ004777 or DMSO control for 7 days. Results: Inhibition of Dot1l leads to gene expression changes in genes related to cell growth and cell cycle. Overall design: Examination of mRNA levels between cells treated with 5 uM EPZ004777 or DMSO control

Publication Title

MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP117619
Inhibition of the oncogenic fusion protein EWS-FLI1 causes G2/M cell cycle arrest and enhanced vincristine sensitivity in Ewing sarcoma
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), created from a chromosomal translocation, is implicated in driving the majority of Ewing sarcomas (ES) by modulation of transcription and alternative splicing. The small molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis. We tested 69 anti-cancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G2/M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1–mediated expression of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding ubiquitin ligase UBE2C, and this in part contributed to the increase in cyclin B1. Biochemical assays revealed that YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients. Overall design: Examination of mRNA profiles of TC32 on knockdown of EWS-FLI1 or treatment with YK-4-279: 3 samples Total: 1 TC32 WT Control, 1 TC32 shEF, 1 TC32 YK

Publication Title

Inhibition of the oncogenic fusion protein EWS-FLI1 causes G<sub>2</sub>-M cell cycle arrest and enhanced vincristine sensitivity in Ewing's sarcoma.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE26835
Genetic variation in radiation-induced cell death
  • organism-icon Homo sapiens
  • sample-icon 769 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We used microarrays to measure the expression levels of genes in irradiated immortalized B cells, lymphoblastoid cells, from members of Centre d'Etude du Polymorphisme Humain (CEPH) Utah pedigrees. Data were collected for cells at baseline and 2 hours and 6 hours after exposure to 10 Gy of ionizing radiation (IR).

Publication Title

Genetic variation in radiation-induced cell death.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE8687
Inhibition of activation of Sez-4 cell line with IL-2 by Jak kinase inhibitors.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.

Publication Title

Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8685
Activation of Sez-4 cell line with IL-2, IL-15 or IL-21.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.

Publication Title

Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50803
Expression of SUDHL-1 cell line treated by ALK inhibitors
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of ALK inhibitor on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from a patient with Anaplastic Large Cell Lymphoma. we used microarrays to map the genome-wide gene expression patterns in ALK+TCL cells in response to ALK inhibition.

Publication Title

Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE6116
Transcriptional Biomarkers to Predict Female Mouse Lung Tumors in Rodent Cancer Bioassays - A 13 Chemical Training Set
  • organism-icon Mus musculus
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The primary goal of toxicology and safety testing is to identify agents that have the potential to cause adverse effects in humans. Unfortunately, many of these tests have not changed significantly in the past 30 years and most are inefficient, costly, and rely heavily on the use of animals. The rodent cancer bioassay is one of these safety tests and was originally established as a screen to identify potential carcinogens that would be further analyzed in human epidemiological studies. Today, the rodent cancer bioassay has evolved into the primary means to determine the carcinogenic potential of a chemical and generate quantitative information on dose-response behavior in chemical risk assessments. Due to the resource-intensive nature of these studies, each bioassay costs $2 to $4 million and takes over three years to complete. Over the past 30 years, only 1,468 chemicals have been tested in a rodent cancer bioassay. By comparison, approximately 9,000 chemicals are used by industry in quantities greater than 10,000 lbs and nearly 90,000 chemicals have been inventoried by the U.S. Environmental Protection Agency as part of the Toxic Substances Control Act. Given the disparity between the number of chemicals tested in a rodent cancer bioassay and the number of chemicals used by industry, a more efficient and economical system of identifying chemical carcinogens needs to be developed.

Publication Title

Application of genomic biomarkers to predict increased lung tumor incidence in 2-year rodent cancer bioassays.

Sample Metadata Fields

Sex, Age, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact