refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 924 results
Sort by

Filters

Technology

Platform

accession-icon GSE51191
Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1 in the regulation of the hypoxic gene program
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE51190
Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1 in the regulation of the hypoxic gene program [microarray: kD_AP1]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Illumina Genome Analyzer II

Description

Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor coactivator 1 (PGC-1), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1 and gene expression upon PGC-1 over-expression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto underestimated number of transcription factor partners involved in mediating PGC-1 action. In particular, principal component analysis of TFBSs at PGC-1 binding regions predicts that, besides the well-known role of the estrogen-related receptor (ERR), the activator protein-1 complex (AP-1) plays a major role in regulating the PGC-1-controlled gene program of hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1.

Publication Title

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE80521
The genomic context and co-recruitment of SP1 affect ERR co-activation by PGC-1 in muscle cells [array]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The peroxisome proliferator-activated receptor co-activator 1 (PGC-1) coordinates the transcriptional network response to promote an improved endurance capacity in skeletal muscle, e.g. by co-activating the estrogen-related receptor (ERR) in the regulation of oxidative substrate metabolism. Despite a close functional relationship, the interaction between these two proteins has not been studied on a genomic level. We now mapped the genome-wide binding of ERR to DNA in skeletal muscle cell line with elevated PGC-1 and linked the DNA recruitment to global PGC-1 target gene regulation. We found that, surprisingly, ERR co-activation by PGC-1 is only observed in the minority of all PGC-1 recruitment sites. Nevertheless, a majority of PGC-1 target gene expression is dependent on ERR. Intriguingly, the interaction between these two proteins is controlled by the genomic context of response elements, in particular the relative GC and CpG content, monomeric and dimeric repeat binding site configuration for ERR, and adjacent recruitment of the transcription factor SP1. These findings thus not only reveal an unprecedented insight into the regulatory network underlying muscle cell plasticity, but also strongly link the genomic context of DNA response elements to control transcription factor - co-regulator interactions.

Publication Title

The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51189
Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1 in the regulation of the hypoxic gene program [microarray: PGC1a_vs_GFP]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor coactivator 1 (PGC-1), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1 and gene expression upon PGC-1 over-expression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto underestimated number of transcription factor partners involved in mediating PGC-1 action. In particular, principal component analysis of TFBSs at PGC-1 binding regions predicts that, besides the well-known role of the estrogen-related receptor (ERR), the activator protein-1 complex (AP-1) plays a major role in regulating the PGC-1-controlled gene program of hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1.

Publication Title

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE80522
The genomic context and co-recruitment of SP1 affect ERR co-activation by PGC-1 in muscle cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP051170
The activation of IL-1 induced enhancers depends on TAK1 kinase activity and NF-KB p65 [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The inflammatory gene response requires activation of the protein kinase TAK1, but it is currently unknown how TAK1-derived signals coordinate transcriptional programs in the genome. We determined the genome-wide binding of the TAK1-controlled NF-?B subunit p65 in relation to active enhancers and promoters of transcribed genes by ChIP-seq experiments. Out of 35,000 active enhancer regions, 410 H3K4me1-positive enhancers show interleukin (IL)-1-induced H3K27ac and p65 binding. Inhibition of TAK1, IKK2 or depletion of p65 blocked inducible enhancer activation and gene expression. As exemplified by the CXC chemokine cluster located on chromosome 4, the TAK1-p65 pathway also regulates the recruitment kinetics of the histone acetyltransferase CBP, of NF-?B p50 and of AP-1 transcription factors to both, promoters and enhancers. This study provides a high resolution view of epigenetic changes occurring during the IL-1 response and allows the first genome-wide identification of a novel class of inducible p65 NF-?B-dependent enhancers in epithelial cells. Overall design: RNA-seq of KB cells either untreated or treated with IL-1 alpha

Publication Title

The Activation of IL-1-Induced Enhancers Depends on TAK1 Kinase Activity and NF-κB p65.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40439
Gene expression analysis of Ncor1 muscle-specific knockout and PGC-1alpha muscle-specific transgenic skeletal muscle
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In the present study we have studied the mechanistic and functional aspects of NCoR1 function in mouse skeletal muscle. NCoR1 muscle-specific knockout mice exhibited an increased oxidative metabolism. Global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1alpha (PGC-1alpha) overexpression on oxidative metabolism in skeletal muscle. The repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1alpha-mediated coactivation of ERRalpha. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases.

Publication Title

The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE22176
Vitamin D and Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE22174
Vitamin D and Gene Expression [A690]
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide expression analysis of hapmap lymphoblastoid and ENCODE project cell lines stimulated with calcitriol

Publication Title

A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE22172
Vitamin D and Gene Expression [A589]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide expression analysis of hapmap lymphoblastoid and ENCODE project cell lines stimulated with calcitriol and/or estrogen

Publication Title

A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.

Sample Metadata Fields

Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact