refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1002 results
Sort by

Filters

Technology

Platform

accession-icon GSE7348
Gene Expression in Naive and Tolerant Macrophages stimulated with LPS
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The inflammatory response initiated by microbial products signaling through Toll-like receptors (TLRs) of the innate immune system is essential for host defense against infection. Because inflammation can be harmful to host tissues, the innate response is highly regulated. Negative regulation of TLR4, the receptor for bacterial lipopolysaccharide (LPS), results in LPS tolerance, defined as hyporesponsiveness to repeated stimulation with LPS. LPS tolerance is thought to protect the host from excessive inflammation by turning off TLR4 signal, which then shuts down TLR-induced genes. However, TLR signaling induces hundreds of genes with very different functions. We reasoned that genes with different functions should have different requirements for regulation. Specifically, genes encoding proinflammatory mediators should be transiently inactivated to limit tissue damage, while genes encoding antimicrobial effectors, which directly target pathogens, should remain inducible in tolerant cells to protect the host from infection. Using an in vitro system of LPS tolerance in macrophages, here we show that TLR-induced genes may indeed be divided into two distinct categories based on their functions and regulatory requirements. Further, we show these distinct groups are regulated by gene-specific, and not signal-specific mechanisms.

Publication Title

Gene-specific control of inflammation by TLR-induced chromatin modifications.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP108664
Whole larvae and nociceptive neuron RNA-Seq samples
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to identify ion channels, specifically transient receptor potential cation channel A (trpA1) channels, that were highly expressed and enriched in nociceptive sensory neurons of Drosophila larvae. In class IV da sensory neurons, we find that TrpA1 is the most highly expressed trpA1 channel of the 14 trpA1 channels in Drosophila, and that its expression is highly enriched when compared to the whole animal transcriptome. Overall design: Four biological replicates of 100 Drosophila melanogaster larval class IV dendritic arborization sensory neurons and five biological replicates of whole Drosophila melanogaster larvae were profiled by mRNA-Seq

Publication Title

TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE145916
RNA Profiling of FAC-Sorted Neurons From the Developing Zebrafish Spinal Cord.
  • organism-icon Danio rerio
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

In this report, we describe a successful protocol for isolating and expression-profiling live fluorescent- protein-labelled neurons from zebrafish embryos. As a proof-of-principle for this method, we FAC-sorted and RNA-profiled GFP-labelled spinal CiA interneurons and compared the expression profile of these cells to those of post-mitotic spinal neurons in general and to all trunk cells. We show that RNA of sufficient quality and quantity to uncover both expected and novel transcription profiles via Affymetrix microarray analysis can be extracted from 5,700 to 20,000 FAC-sorted cells. As part of this study, we also further confirm the genetic homology of mammalian and zebrafish V1 interneurons, by demonstrating that zebrafish V1 cells (CiAs) express genes that encode for the transcription factors Lhx1a and Lhx5. This protocol for dissociating, sorting and RNA-profiling neurons from organogenesis-stage zebrafish embryos should also be applicable to other developing organs and tissues and potentially other model organisms.

Publication Title

RNA profiling of FAC-sorted neurons from the developing zebrafish spinal cord.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE53335
Regulation of inducible genes in epithelial to mesenchymal transition by chromatinized PKC-theta
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE53266
Gene expression changes in a breast cancer stem cell model.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE19578
Integrated molecular genetic profiling of pediatric-high grade gliomas reveals key differences with adult disease
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: To define copy number alterations and gene expression signatures underlying pediatric high-grade glioma (HGG). Patients and Methods: We conducted a high-resolution analysis of genomic imbalances in 78 de novo pediatric HGG, including 7 diffuse intrinsic pontine gliomas, and 10 HGG cases arising in children who received cranial irradiation for a previous cancer, using Affymetrix 500K GeneChips. Gene expression signatures for 53 tumors were analyzed with Affymetrix U133v2 arrays. Results were compared with publicly available data from adult tumors. Results: Pediatric and adult glioblastoma were clearly distinguished by frequent gain of chromosome 1q (30% vs 9%) and lower frequency of chromosome 7 gain (13% vs 74%), respectively. The most common focal amplifications also differed, with PDGFRA and EGFR predominant in childhood and adult populations respectively. These common alterations in pediatric HGG were detected at higher frequency in irradiation-induced tumors, suggesting that these are initiating events in childhood gliomagenesis. CDKN2A was the most common tumor suppressor gene targeted by homozygous deletion in pediatric HGG. No IDH1 hotspot mutations were found in pediatric tumors, highlighting molecular differences in pathogenesis between childhood HGG and adult secondary glioblastoma. Integrated copy number and gene expression data indicated that deregulated PDGFRA signaling plays a major role in pediatric HGG. Conclusions: Integrated molecular profiling showed substantial differences in the molecular features underlying pediatric and adult HGG, indicating that findings in adult tumors cannot be simply extrapolated to younger patients. PDGFRA may be a useful target for pediatric HGG including diffuse pontine gliomas.

Publication Title

Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease.

Sample Metadata Fields

Age, Disease

View Samples
accession-icon SRP075283
Development and differentiation of early innate lymphoid progenitors
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Early innate lymphoid progenitors (EILP) have recently been identified in the mouse adult bone marrow as a multipotential progenitor population committed to ILC lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor-successor relationships between EILP, IL-7R+ common lymphoid progenitors (ALP), and ILC precursors (ILCp). Bioinformatic, phenotypical, functional, and genetic approaches collectively establish EILP as an intermediate progenitor between ALP and ILCp. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development. Overall design: transcriptional profiling of early ILC progenitors (EILP, ILCp), and common lymphoid progenitors (ALP) was performed by RNA sequencing

Publication Title

Development and differentiation of early innate lymphoid progenitors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE45346
Estrogen inhibits lipid content in liver exclusively from membrane receptor signaling
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Membrane estrogen receptor (ER) alpha stimulates AMP kinase to suppress SREBP1 processing and lipids in liver

Publication Title

Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18544
Expression Profiling of a Mouse Xenograft Model of Triple-Negative Breast Cancer Brain Metastases With Vorinostat
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Gene Expression Profiling of a Mouse Xenograft Model of Triple-Negative Breast Cancer Brain Metastases With and Without Vorinostat Treatment.

Publication Title

Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE9819
Comparisons of Affymetrix Whole-Transcript Human Gene 1.0 ST array with standard 3' expression arrays
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (1) it interrogates the entire mRNA transcript, and (2) it uses cDNA targets. To assess the impact of these differences on array performance, we performed series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both cRNA and cDNA targets were probed on the HG-U133 Plus 2.0 array. The results show that the overall reproducibility is best using the Gene 1.0 ST array. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. The Gene 1.0 ST is most concordant with the HG-U133 array hybridized with cDNA targets, thus showing the impact of the target type. Agreements are better between platforms with designs which choose probes from the 3' end of the gene. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.

Publication Title

Affymetrix Whole-Transcript Human Gene 1.0 ST array is highly concordant with standard 3' expression arrays.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact