refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1002 results
Sort by

Filters

Technology

Platform

accession-icon SRP066672
Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The mitochondrial matrix is unique in that it must integrate folding and assembly of proteins derived from nuclear and mitochondrial genomes. In C. elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial matrix-localized ornithine trans-carbamylase (OTC) induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here, we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response involved widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing due to transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3. This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt. Overall design: triplicate experiment of 2 conditions (untreated, GTPP treatment)

Publication Title

Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18897
Whole blood expression profiling of obese diet-sensitive, obese diet-resistant and lean human subjects
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have carried out whole-genome expression profiling of whole blood from obese subjects, defined as obese diet-sensitive and obese diet-resistant, and well matched lean individuals. The diet-sensitive or diet-resistant status refers to the different rates of weight loss observed in the two groups on a low-calorie diet regimen. Bioinformatic analysis revealed alterations in transcription in key pathways that are consistent with impaired capacity for fatty acid oxidation driven mitochondrial ATP synthesis in obese subjects who are resistant to weight loss.

Publication Title

Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity.

Sample Metadata Fields

Sex, Subject, Time

View Samples
accession-icon GSE67361
IL-17A and IL-6 -stimulated expression data from primary epithelial cell cultures derived from human trachea tissues
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

RNAs were isolated from primary cultures after 24 hour treatment with IL-17A or IL-6 (10 ng/ml) in primary human TBE cells.

Publication Title

IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86404
The Transcriptome of HIV-1 Infected Intestinal CD4+ T cells Exposed to Enteric Bacteria
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The gastrointestinal tract is a major site of early HIV-1 replication and death of CD4+ T cells. As HIV-1 replicates in the gut, the protective epithelial barrier gets disrupted, leading to the entry of bacteria into the underlying tissue and the bloodstream, leading to inflammation and clinical complications even in HIV-1-infected patients taking antiviral drugs. Counteracting these pathogenic processes may require in-depth understanding of the molecular pathways that HIV-1 and microbes utilize to infect, functionally alter and/or kill CD4+ T cells. However, to date, the nature of the genes altered by relevant HIV-1 strains and bacteria in intestinal CD4+ T cells remains unclear.

Publication Title

The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP049264
FOXP1 orchestration of ASD-relevant signaling pathways.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Mutations in the gene encoding the transcription factor forkhead box P1 or FOXP1 occur in patients with neurodevelopmental disorders, including autism. However, the function of FOXP1 in the brain remains mostly unknown. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and mouse brain and demonstrate a conserved role for FOXP1 transcriptional regulation of autism and Fragile X Mental Retardation Protein (FMRP) mediated pathways. Coexpression networks support a role for Foxp1 in neuronal activity, and we show that Foxp1 is necessary for neuronal excitability. Using a Foxp1 mouse model, we observe defects in ultrasonic vocalizations. This behavioral phenotype is reflected at the genomic level as striatal Foxp1-regulated overlap with genes known to be important in rodent vocalizations. These data support an integral role for FOXP1 in regulating signaling pathways vulnerable in developmental disorders and the specific regulation of pathways important for vocal communication. Overall design: We carried out RNA-sequencing (RNA-seq) and ChIP-sequencing of human neural progenitors cells. We carried out RNA-sequencing (RNA-seq) of mouse striatal tissue, mouse hippocampal tissue and mouse cortical tissue. For the RNA-seq, four indipendent replicates were used for the neural progenitor cells and mouse tissues. For the Chip-seq, a single neural progenitor cell line was used.

Publication Title

FoxP1 orchestration of ASD-relevant signaling pathways in the striatum.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4648
Earliest Changes in the Left Ventricular Transcriptome Post-Myocardial Infarction
  • organism-icon Mus musculus
  • sample-icon 198 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We report a genome-wide survey of early responses of the mouse heart transcriptome to acute myocardial infarction (AMI). For three regions of the left ventricle (LV), namely ischemic/infarcted tissue (IF), the surviving LV free wall (FW) and the interventricular septum (IVS), 36,899 transcripts were assayed at six time points from 15 min to 48 h post-AMI in both AMI and sham surgery mice. For each transcript, temporal expression patterns were systematically compared between AMI and sham groups, which identified 515 AMI-responsive genes in IF tissue, 35 in the FW, 7 in the IVS, with three genes induced in all three regions. Using the literature, we assigned functional annotations to all 519 nonredundant AMI-induced genes and present two testable models for central signaling pathways induced early post-AMI. First, the early induction of 15 genes involved in assembly and activation of the activator protein-1 (AP-1) family of transcription factors implicates AP-1 as a dominant regulator of earliest post-ischemic molecular events. Second, dramatic increases in transcripts for arginase 1 (ARG1), the enzymes of polyamine biosynthesis and protein inhibitor of nitric oxide synthase (NOS) activity indicates that NO production may be regulated, in part, by inhibition of NOS and coordinate depletion of the NOS substrate, L-arginine. ARG1 was the single most highly induced transcript in the database (121-fold in IF region) and its induction in heart has not been previously reported.

Publication Title

Earliest changes in the left ventricular transcriptome postmyocardial infarction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53335
Regulation of inducible genes in epithelial to mesenchymal transition by chromatinized PKC-theta
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE53266
Gene expression changes in a breast cancer stem cell model.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE43738
Expression data from inflamed PANC1 cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The effects of mutant p53 on TNFa stimulated PANC1 cells was tested.

Publication Title

Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP189905
Mutations in RABL3 Alter KRAS Prenylation and are Associated with Hereditary Pancreatic Cancer
  • organism-icon Danio rerio
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited treatment options. Familial predisposition to PDAC occurs in ~10% of cases, but causative genes have not been identified in most families. Uncovering the genetic basis for PDAC susceptibility has immediate prognostic implications for families and can provide mechanistic clues to PDAC pathogenesis. Here, we perform whole-genome sequence analysis in a family with multiple cases of PDAC and identify a germline nonsense mutation in the member of RAS oncogene family-like 3 (RABL3) gene never before directly associated with hereditary cancer. The truncated mutant allele (RABL3_p.S36*) co-segregates with cancer occurrence. To evaluate the contribution of the RABL3 mutant allele in hereditary cancer, we generated rabl3 heterozygous mutant zebrafish and found increased susceptibility to cancer formation in two independent cancer models. Unbiased approaches implicate RABL3 in RAS pathway regulation: the transcriptome of juvenile rabl3 mutants reveals a KRAS upregulation signature, and affinity-purification mass spectrometry for proteins associated with RABL3 or RABL3_p.S36* identifies Rap1 GTPase-GDP Dissociation Stimulator 1 (RAP1GDS1, SmgGDS), a chaperone that regulates prenylation of RAS GTPases. Indeed, we find that RABL3_p.S36* accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Furthermore, rabl3 homozygous mutant zebrafish develop severe craniofacial, skeletal, and growth defects consistent with human RASopathies, and these defects are partially rescued with the MEK inhibitor trametinib. Finally, we identify additional germline mutations in RABL3 that impact RAS activity in vivo and have a significant burden in a cohort of patients with developmental disorders, suggesting a role in undiagnosed RASopathies. Moreover, RABL3 is upregulated in multiple human PDAC cell lines and knockdown abrogates proliferation, consistent with a broader role for RABL3 in PDAC. Our studies identify the RABL3 mutation as a new target for genetic testing in cancer families and uncover a novel mechanism for dysregulated RAS activity in development and cancer. Overall design: WT (4 replicates) and homozygous rabl3-TR41 mutant (3 replicates) larval zebrafish at 21 days of age.

Publication Title

Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact