refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1002 results
Sort by

Filters

Technology

Platform

accession-icon GSE53148
Gene expression profiles in vitiligo lesional skin
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53147
Genome-wide analysis of gene expression within vitiligo mouse skin
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Skin samples from mice in a model of vitiligo were selected for gene expression profiling in order to identify active inflammatory pathways.

Publication Title

CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53335
Regulation of inducible genes in epithelial to mesenchymal transition by chromatinized PKC-theta
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE53266
Gene expression changes in a breast cancer stem cell model.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE19212
Profiling expression changes caused by a segmental aneuploid in maize meristem tissues
  • organism-icon Zea mays
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Segmental aneuploidy refers to the relative excess or deficiency of specific chromosome regions. This condition results in gene dosage imbalance and often causes severe phenotypic alterations in plants and animals. The mechanisms by which gene dosage imbalance effects gene expression and phenotype are not completely clear. The effects of aneuploidy on the transcriptome may depend on the types of cells analyzed and on the developmental stage. We performed global gene expression profiling to determine the effects of segmental aneuploidy on gene expression levels in two different maize tissues and a detailed analysis of expression of 30 genes affected by aneuploidy in multiple maize tissues.

Publication Title

Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37676
Expression data from control and Ascorbic Acid (AA) stimulated Mc-3T3-E1 osteoblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is markedly upregulated upon Ascorbic Acid (AA) stimulation. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone secretion and deposition. RabGTPases are major regulators on protein trafficking throughout the cell. In this study, we identified the Rab GTPases that are upregulated during 5-day AA differentiation of OBs using microarray analysis, namely Rab1, Rab3d and Rab27b.

Publication Title

Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP167389
Gene expression profiles of isogenic single-cell derived clones of BRAF-mutated SK-MEL-5 melanoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

We recently reported that single-cell derived isogenic subclones of SKMEL5 cells have differential initial sensitivity to BRAF-inhibitors. In order to probe differences among these subclones, we selected three subclones with unique drug responses: progressing (SK-MEL-5 SC10), stationary (SK-MEL-5 SC07), and regressing (SK-MEL-5 SC01) and performed RNASeq. This study examines differentially expressed genes (DEGs) among the subclones to identify the molecular basis for initial differences in drug sensitivity. Overall design: Transcriptomics analysis between single-cell derived isogenic subclones of BRAF-mutated melanoma cell line, SK-MEL-5

Publication Title

A Nonquiescent "Idling" Population State in Drug-Treated, BRAF-Mutated Melanoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE2437
Transcriptional changes during neuronal death and replacement in the adult olfactory epithelium
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Expression profiling of mRNA abundance in the adult mouse olfactory epithelium during replacement of OSNs forced by the bilateral ablation of the olfactory bulbs. The experiment was done on 6 week old male C57Bl/6 mice. Olfactory epithelium tissue samples were collected on days 1, 5, and 7 after bulbectomy. The cellular processes activated by bulbectomy include apoptosis of mature olfactory sensory neurons, infiltration of macrophages and dendritic cells, stimulation of proliferation of basal cell progenitors, and differentation of new sensory neurons.

Publication Title

Transcriptional changes during neuronal death and replacement in the olfactory epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42789
Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: Comparison with immune activation
  • organism-icon Mus musculus
  • sample-icon 159 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice.

Publication Title

Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE67796
Expression data from liver, PFC and amygdala of mice treated with PPAR agonists
  • organism-icon Mus musculus
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists have demonstrated therapeutic properties for several brain disorders, including alcohol dependence. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated and little is known about their effects in the brain. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar and fenofibrate decreased ethanol consumption in male C57BL/6J mice while bezafibrate did not. Hypothesizing that fenofibrate and tesaglitazar are causing brain gene expression changes that precipitate the reduction in ethanol drinking, we gave daily oral injections of fenofibrate, tesaglitazar and bezafibrate to mice for eight consecutive days and collected liver, prefrontal cortex and amygdala 24 hours after last injection. RNA was isolated and purified using MagMAX-96 Total RNA Isolation Kit. Biotinylated, amplified cRNA was generated using Illumina TotalPrep RNA Amplification Kit and hybridized to Illumina MouseWG-6 v2.0 Expression microarrays.

Publication Title

PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact