refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 307 results
Sort by

Filters

Technology

Platform

accession-icon SRP185912
Inferring population dynamics from single-cell RNA-sequencing time-series data
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconNextSeq 500

Description

This dataset consists of single-cell RNA-seq (Drop-seq) data from thymi of day 14.5 mouse embryos. The sample includes the whole thymus, including mesenchyme, endothelium, epithelium, thymocytes, and other lymphocytes. The mouse is a Rag2-/- knockout. Overall design: 1 sample

Publication Title

Inferring population dynamics from single-cell RNA-sequencing time series data.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP076334
Identification of rare, dormant and therapy resistant stem cells in acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 228 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche. Overall design: Gene expression profiles from two PDX ALL Samples (ALL-199 & ALL-265) were generated for either dormant (LRC) vs. dividing (non-LRC) cells or drug treated vs. non-treated cells. For single cell analysis one mouse were analyzed for each condition.

Publication Title

Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE16555
Over-expression and knockdown of KLF5
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Activation of the Ras/Erk pathway upregulates expression of the Kruppel-like Factor 5 (KLF5) transcription factor, and KLF5 is a downstream mediator of Ras oncogenic signaling. Specifically, in bladder and colon cancer cell lines KLF5 upregulates the Ras-pathway target gene cyclin D1, and facilitates entry into the S phase of the cell cycle. Ras mutations are common in lung cancer, but a role for KLF5 in lung tumorigenesis has not been defined. To this end, we manipulated KLF5 expression in four Ras-mutant human lung adenocarcinoma cell lines to find that KLF5 significantly modulates anchorage-independent growth, a mutant Ras phenotype. However, in a mouse model of human lung adenocarcinoma, K-RasG12D does not critically require Klf5 to mediate oncogenesis or induce cyclin D1 expression.

Publication Title

Kruppel-like factor 5 is not required for K-RasG12D lung tumorigenesis, but represses ABCG2 expression and is associated with better disease-specific survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-1310
Transcription profiling of Arabidopsis seedlings treated with NAE(12:0)
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcript profiling and gene expression studies in NAE-treated seedlings: Seeds were germinated and seedlings maintained for 4 d in liquid MS media supplemented with 35 uM NAE(12:0)(N-lauroylethanolamine) prior to RNA isolation.

Publication Title

N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings.

Sample Metadata Fields

Age, Specimen part, Compound

View Samples
accession-icon GSE95639
Secretagogin is expressed by developing neocortical GABAergic neurons in humans but not mice and increases neurite arbor size and complexity
  • organism-icon Homo sapiens
  • sample-icon 87 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of gene expression over serial 150um sections of a single gestational week 18 human neocortical specimen. The hypothesis tested with this dataset was that a transcriptional signature of GABAergic neurons could be isolated via unsupervised gene coexpression analysis due to variation in the abundance of this cell type from section to section. This dataset is the second of its kind generated using this method (Gene Coexpression Analysis of Serial Sections, or GCASS).

Publication Title

Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP074301
The function of c-Fos in hepatocarcinogenesis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

c-Fos, a member of the stress-activated Activator Protein 1 (AP-1) transcription factor family, is expressed in human hepatocellular cancer (HCC). Using genetically engineered mouse models (GEMMs) we show that hepatocyte-specific expression of c-Fos leads to a proliferative, de-differentiated phenotype, whereas hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced liver cancer. Furthermore, c-Fos-expressing livers resemble human HCCs based on expression profiles. In the present RNA seq, we intend to analyze the transcriptomic profile of livers at 2 and 4 mo hepatocyte-specific c-Fos expression compared to the corresponding age-matched control mice. Moreover, we analyzed livers of mice with hepatocyte-specific deletion c-Fos at 48h after DEN treatment compared to identically treated control mice. Overall design: The general idea was to analyze the transcriptomic profile of hepatocyte-specific c-Fos over-expressing livers at 2 and 4 mo expression. Hereby, a hepatocyte-specific doxycycline (Dox)-switchable mouse model was (LAP-tTA; col1a1:Tet-O-fosFlag) was generated and c-Fos expression was induced at the age of 3 weeks by removal of doxycycline. Each sample LaptTA-fos-MUT represents an individual hepatocyte-specific c-fos expressing mouse at the indicated time-point and the corresponding identically treated control mouse LaptTA-fos-CO. Moreover, the transcriptomic profile of livers with hepatocyte-specific deletion of c-Fos at 48h after diethylnitrosamine (DEN)-induced liver cancer initiation was analyzed. For hepatocyte-specific knock-out of c-Fos, mice with conditional alleles of c-fos and the Alfp-Cre transgene were used. Control mice only carried the Alfp-Cre transgene. At the age of 8 weeks these mice were injected with 100mg/kg DEN. Each sample AlfpCre-fos-MUT_DEN represents an individual hepatocyte-specific c-fos knock-out mouse 48h after DEN and the identically treated control mouse AlfpCre-fos-CO-Cre+_DEN.

Publication Title

Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP131149
Transcriptome profiling of the interconnection of pathways involved in malignant transformation and response to hypoxia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In tumor tissues, hypoxia is a commonly observed feature resulting from rapidly proliferating cancer cells outgrowing the surrounding vasculature network. The four-step isogenic BJ cell model enables studies of defined steps of tumorigenesis: the normal, immortalized, transformed, and metastasizing stages. By transcriptome profiling under atmospheric and moderate hypoxic (3% O2) conditions, we observed that despite being highly similar, the four cell lines responded strikingly different to hypoxia. We demonstrate that the transcriptome adaptation to moderate hypoxia resembles the process of malignant transformation. The transformed cells displayed a distinct capability of metabolic switching, reflected in reversed gene expression patterns for several genes involved in oxidative phosphorylation and glycolytic pathways. By profiling the stage-specific responses to hypoxia, we identified ASS1 as a potential prognostic marker in hypoxic tumors. This study demonstrates the usefulness of the BJ cell model for highlighting the interconnection of pathways involved in malignant transformation and hypoxic response. Overall design: 16 paired-end samples in total: 4 different cell lines sequenced in duplicate across 2 conditions each.

Publication Title

Transcriptome profiling of the interconnection of pathways involved in malignant transformation and response to hypoxia.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP133294
RNA-Seq profiling of iPSC-derived ventricular and atrial cardiomyocytes
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We profiled RNA expression in human iPSC-derived ventricular and atrial cardiomyocytes Overall design: 4 biological replicates of human iPSC-derived ventricular cardiomyocytes and 4 biological replicates of iPSC-derived atrial cardiomyocytes (from 3 individual iPSC lines)

Publication Title

Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE29370
Gene expression profile of malignant mesothelioma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Malignant mesothelioma (MM) is an asbestos-related malignancy and largely unresponsive to conventional chemotherapy or radiotherapy. Novel, more effective therapeutic strategies are needed for this fatal disease. We performed microarray analysis of MM using Affymetrix Human U133 Plus 2.0 array. Aberrant expression of the genes participating in semaphorin signaling were detected in malignant mesothelioma cells. All MM cells downregulated the expression of more than one gene for SEMA3B, 3F, and 3G when compared with Met5a, a normal pleura-derived cell line. In 12 of 14 epithelioid MM cells, the expression level of SEMA3A was lower than that in Met5a. An augmented expression of VEGFA was detected in half of the MM cells. The expression ratio of VEGFA/SEMA3A was significantly higher in the epithelioid MMs than in Met5a and the non-epithelioid MMs. Next, gene expression profiling for the polycomb and trithorax group genes revealed that expression of BAP1, the catalytic subunit of the polycomb repressive deubiquitinase complex, and many trithorax group genes was downregulated in MMs compared with the expression of the same genes in Met5a cells. Perturbation of the polycombtrithorax balance plays a significant role in the pathogenesis of malignant mesothelioma.

Publication Title

Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioid type of malignant mesothelioma cells.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon SRP037992
SCML2 Establishes the Male Germline Epigenome
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gametogenesis is dependent on the expression of germline-specific genes. However, it remains unknown how the germline epigenome is distinctly established from that of somatic lineages. Here we show that genes commonly expressed in somatic lineages and spermatogenesis-progenitor cells undergo repression in a genome-wide manner in late stages of the male germline and identify underlying mechanisms. SCML2, a germline-specific subunit of a Polycomb repressive complex 1 (PRC1), establishes the unique epigenome of the male germline through two distinct antithetical mechanisms. SCML2 works with PRC1 and promotes RNF2-dependent ubiquitination of H2A, thereby marking somatic/progenitor genes on autosomes for repression. Paradoxically, SCML2 also prevents RNF2-dependent ubiquitination of H2A on sex chromosomes during meiosis, thereby enabling unique epigenetic programming of sex chromosomes for male reproduction. Our results reveal divergent mechanisms involving a shared regulator by which the male germline epigenome is distinguished from that of the soma and progenitor cells. Overall design: RNA-seq and ChIP-seq analyses using wild-type and Scml2-KO spermatogenic cells

Publication Title

Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact