refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 307 results
Sort by

Filters

Technology

Platform

accession-icon GSE113797
DUSP4 regulates input to the suprachiasmatic circadian network via VIP-induced activation of the ERK1/2 pathway
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Analysis of the genes and cellular signalling cascades mediating the response of SCN slices to vasoactive intestinal peptide (VIP). Primary goal was to find novel genes that may be involved in circadian phase shifting for further study. Promoter analysis of significantly regulated genes and gene ontology analysis would provide information into pathways VIP acts through in the SCN.

Publication Title

Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53349
CD8+ T cells during acute viral respiratory infection are uniquely differentiated and regulated by multiple inhibitory receptors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Acute viral infection typically generates functional effector CD8+ T cells that aid in pathogen clearance. However, during acute viral lower respiratory infection (LRI), lung CD8+ T cells are functionally impaired and do not optimally control viral replication, while spleen CD8+ T cells specific for the same viral epitopes remain fully functional. To better understand the mechanisms governing lung CD8+ T cell impairment, we used flow cytometry to sort anti-viral CD8+ T cells during viral LRI. Lung and spleen cells were stained with MHC-class I tetramers representing the immunodominant anti-viral CD8+ T cell epitope. We then sorted to high purity: nave CD8+ T cells, spleen epitope-specific CD8+ T cells, lung epitope-specific CD8+ cells and secondary infection lung epitope-specific CD8+ T cells. We then performed a genome wide transcriptional analysis of these cells to characterize the gene expression profile of lung CD8+ T cell impairment.

Publication Title

Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP178555
Multi-omics and genome-scale modeling reveal a metabolic shift during C. elegans ageing
  • organism-icon Caenorhabditis elegans
  • sample-icon 45 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We conducted a time series of transcriptomics measurements during normal ageing in C. elegans in two non-reproductive strains (fem and gem) during normal ageing (days 1 to 10 of adulthood) and used this together with a multi-omics modelling pipeline to explore the changes that take place due to ageing. Overall design: Two strains and several time points with three replicates per strain and time point.

Publication Title

Multi-Omics and Genome-Scale Modeling Reveal a Metabolic Shift During <i>C. elegans</i> Aging.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP179766
Mouse skin samples after Zika virus-infected mosquito bites
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Mouse skin bitten by Zika virus-infected mosquitoes were isolated and performed RNA-seq Overall design: Examination of host responses after Zika virus-infected mosquito bites, in duplicate

Publication Title

Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE36701
Gene expression analysis of rectal mucosa in chronic irritable bowel syndrome (IBS) compared to healthy volunteers (HV)
  • organism-icon Homo sapiens
  • sample-icon 220 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An investigation of gene expression changes in rectal biopsies from donors with IBS compared to controls to begin to understand this complex syndrome. To further investigate differences between IBS groups (constipation and diarrhoea predominant) (part1) and how IBS relates to bacterial infection (part2) with biopsies taken 6 months after Campylobacter jejuni infection.

Publication Title

Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): association with TNFSF15 and TNFα.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE19830
Expression data from pure/mixed brain, liver and lung to test feasability and sensitivity of statistical deconvolution
  • organism-icon Rattus norvegicus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Tissues are often made up of multiple cell-types. Blood, for example, contains many different cell-types, each with its own functional attributes and molecular signature. In humans, because of its accessibility and immune functionality, blood cells have been used as a source for RNA-based biomarkers for many diseases. Yet, the proportions of any given cell-type in the blood can vary markedly, even between normal individuals. This results in a significant loss of sensitivity in gene expression studies of blood cells and great difficulty in identifying the cellular source of any perturbations. Ideally, one would like to perform differential expression analysis between patient groups for each of the cell-types within a tissue but this is impractical and prohibitively expensive.

Publication Title

Cell type-specific gene expression differences in complex tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20300
Whole blood gene expression analysis of stable and acute rejection pediatric kidney transplant patients
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Full title: Expression data from whole blood gene expression analysis of stable and acute rejection pediatric kidney transplant patients

Publication Title

Cell type-specific gene expression differences in complex tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18358
Gene Expression Profiling of Glomeruli from a mouse model of Denys-Drash Syndrome
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Wilms tumor-suppressor gene WT1, a key player in renal development, also has a crucial role in maintenance of the glomerulus in the mature kidney. However, molecular pathways orchestrated by WT1 in podocytes, where it is highly expressed, remain unknown. Their defects are thought to modify the cross-talk between podocytes and other glomerular cells and ultimately lead to glomerular sclerosis, as observed in diffuse mesangial sclerosis (DMS) a nephropathy associated with WT1 mutations.

Publication Title

A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP096784
WT1 expression in breast cancer disrupts the epithelial/mesenchymal balance of tumour cells and correlates with the metabolic response to docetaxel
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Wilms'' Tumour gene 1 (WT1), encodes for a complex protein with transcription factor activity which is essential in mammals throughout life. We provide a complete study of WT1 expression across different breast cancer subtypes as well as isoform specific expression analysis. Using in vitro cell lines, clinical samples and publicly available gene expression datasets, we demonstrate that WT1 plays a role in regulating the epithelial-mesenchymal balance of breast cancer cells and that WT1-expressing tumours are mainly associated with a mesenchymal phenotype. WT1 gene expression also correlates with CYP3A4 levels and is associated with poorer response to taxane treatment. Overall design: RNA profiles of breast cancer cells (MDA-MB-157) were generated by deep sequencing on the Illumina HiSeq 2000 platform. Untreated MDA-MB-157 cells, MDA-MB-157 cells transduced with a lacZ control vector, and MDA-MB-157 cells transduced with a lentiviral vector carrying a Wt1 shRNA were sequenced (titled untreated, lacZ and Wt1 respectively).

Publication Title

WT1 expression in breast cancer disrupts the epithelial/mesenchymal balance of tumour cells and correlates with the metabolic response to docetaxel.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3100
Cystic Fibrosis Mouse Lung Profiles
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profiling with microarrays was used to identify genes differentially expressed in the lungs of B6 and BALB CF mice compared to non-CF littermates

Publication Title

Strain-dependent pulmonary gene expression profiles of a cystic fibrosis mouse model.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact