refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 205 results
Sort by

Filters

Technology

Platform

accession-icon GSE14319
Genetic Control of Cellular Quiescence in S. pombe
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Transition from proliferation to quiescence brings about extensive changes in cellular behavior and structure. However, genes critical for establishing and/or for maintaining quiescence are largely unknown. The fission yeast S. pombe is found as an excellent model for studying this problem, because it becomes quiescent under nitrogen starvation. Here we characterize 610 temperature-sensitive (ts) mutants, and identify 33 genes required for entry into and the maintenance of quiescence. These genes cover a broad range of cellular functions in the cytoplasm, membrane and the nucleus, encoding proteins for stress-responsive and cell cycle kinase signaling pathway, actin-bound and osmo-controlling endosome formation, RNA transcription, splicing and ribosome biogenesis, chromatin silencing, biosynthesis of lipid and ATP, cell wall and membrane morphogenesis, protein trafficking and vesicle fusion. We specifically highlight Fcp1, CTD phosphatase of RNA polymerase II, which differentially affects transcription of genes involved in quiescence and proliferation. We propose that the transcriptional role of Fcp1 is central to differentiate quiescence from proliferation.

Publication Title

Genetic control of cellular quiescence in S. pombe.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE99080
Expression data from NRF3 knocked-down DLD-1 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Accumulated evidences suggest physiological relevance between the transcription factor NRF3 (NFE2L3) and cancers. However NRF3 target genes in cancer cells remain poorly understood.

Publication Title

Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP055677
RNA-seq analysis of add-back rescued TALEN-mediated LATS2 knockout HeLa-S3 cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Chromatin modifying activities for construction of appropriate epigenetic landscapes by polycomb repressive complex 2 (PRC2) play an essential role in development and tumorigenesis. However, the spatiotemporal mechanisms by which PRC2 achieves diverse epigenomes for specific tissue or cellular contexts remain poorly understood. Here, we discovered that LATS2 knockout causes dysregulation of PRC2 and subsequent transcriptome changes for differentiation in both mouse and human cells. LATS2 depletion dependent dysregulation of PRC2 also effects H3K4me3 and forms negative feedback loop for maintenance of PRC2. Further analyses reveal that LATS2 on chromatin binds to EZH2 and LATS2 has ability to phosphorylate PRC2 in vitro. These LATS2 dependent H3K27me3 targets are highly induced during neurogenesis, and statistical analysis of glioblastoma multiforme reveals that LATS2-high cases show more dedifferentiated transcriptome and poor prognosis with silencing of H3K27me3 targets. These observations suggest that LATS2-mediated epigenome coordination is pivotal for development and disease, including cancer. Overall design: mRNA of LATS2 KO HeLa-S3 cells rescued by empty vector, wild-type LATS2 or kinase-dead LATS2 were subjected to deep sequencing profiling using Illumina HiSeq 2500

Publication Title

LATS2 Positively Regulates Polycomb Repressive Complex 2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65008
Expression data of ileal mucosa in developing piglets
  • organism-icon Sus scrofa
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The transcriptome changes of the ileal mucosa in suckling piglets during early postnatal life were analysed to contribute to the knowledge of a pigs gut development. In addition, the ileal transcriptome of suckling piglets was compared with that of age-matched weaned piglets (weaned at the age of 21 days) to elucidate the effect of weaning on the developing gut.

Publication Title

Weaning Markedly Affects Transcriptome Profiles and Peyer's Patch Development in Piglet Ileum.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP055424
High-throughput RNA-sequencing analysis in human glioma stem cell
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs), which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. To investigate gene expression including lncRNA (long non-coding RNA) in GSC, we have performed high-throughput RNA-sequencing (RNA-seq) experiment using Illumina GAIIx. Overall design: Profiles of gene expression including lncRNA in GSC were generated by RNA-seq using Illumina GAIIx.

Publication Title

Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33978
Expression data of seeds imbibed at 22C or 4C for 24hr of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Keeping imbibed seeds at low temperatures for a certain period, so called seed vernalization (SV) treatment, promotes seed germination and subsequent flowering in various plants. Vernalization-promoting flowering requires GSH. However, the expression patterns analyzed by GeneChip arrays showed that increased GSH biosynthesis partially mimics SV treatment in Arabidopsis thaliana. SV treatment (keeping imbibed seeds at 4C for 24 h) induced a specific pattern of gene expression and promoted subsequent flowering in wild-type plants. A similar pattern was observed at 22C in transgenic plants (35S-GSH1 plants) overexpressing the -glutamylcysteine synthetase gene GSH1, coding an enzyme limiting GSH biosynthesis, under the control of the cauliflower mosaic virus 35S promoter. This pattern was strengthened at 4C but flowering was less responsive to SV treatment. There was a difference in the transcript behaviour of the flowering repressor FLC between wild-type and 35S-GSH1 plants. Unlike other genes responsive to SV treatment, SV-dependent decrease in FLC in wild-type plants was reversed in 35S-GSH1 plants. SV treatment increased GSSG level in wild-type seeds, whereas GSSG level was high in 35S-GSH1 plants, even at a non-vernalizing temperature. Taking into consideration that low temperatures stimulate GSH biosynthesis and bring about oxidative stress, GSSG is considered to trigger low temperature response, but enhanced GSH synthesis was not enough for mimicking SV treatment. To complete it, it essentially required the cellular redox retransition from the oxidized to the reduced state that is observed after the seed vernalization treatment.

Publication Title

Overexpression of GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP055753
Mutational blows to Sox2+ cells induce epithelial squamous tumor initiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cancer originates as the progressive accumulation of genetic mutations in proto-oncogenes and tumor suppressors. However, the early events underlying tumor initiation remain largely elusive, mostly due to the general lack of information regarding the cells-of-origin responsible for tumor formation as well as the precise impacts of genetic insults on tumor initiation in vivo. Here, we demonstrate that Sox2-positive (Sox2+) adult stem cells are responsible for epithelial squamous tumor formation. Conditional expression of oncogenic Kras (KrasG12D) and knockout of p53 (also known as Trp53) in Sox2+ cells quickly and specifically resulted in the formation of squamous tumors in the forestomach and esophagus. GFP-based lineage tracing experiments demonstrated that Sox2+ cells are the cells-of-origin of squamous tumors in the esophagus and forestomach. Of note, our data showed that p53 deletion alone did not suffice for tumor initiation. On the contrary, tumor initiation was observed upon KrasG12D activation whereas p53 deletion further contributed to the malignancy of the generated tumors, pointing out distinct roles for Kras activation and p53 deletion in squamous tumor formation and progression, to which a multihit carcinogenesis model can be applied. Global gene expression analysis revealed secreting factors upregulated in the generated tumors induced by oncogenic Kras, which contribute to tumor progression. Taken together, these results demonstrate that epithelial squamous tumors can specifically originate as a consequence of defined genetic mutations in a Sox2+ cell population and highlight the connections between proliferative stem cells and tumor development in vivo. Overall design: Expression profiling of mouse tissues with genetically induced tumors by RNA-Seq

Publication Title

Mutations in foregut SOX2<sup>+</sup> cells induce efficient proliferation via CXCR2 pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60620
Reduction of DNA methylation suppresses colon carcinogenesis through induction of tumor cell differentiation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In this study, we analyzed global gene expressions of colon tumors from DNA hypomethylated and the control mice. We found that DNA hypomethylated tumors express significantly higher levels of intestinal differentiation-related genes when compared with the control tumors. These results suggest that DNA methylation may play a role in the maintenance of undifferentiated state of colon tumor cells.

Publication Title

Reducing DNA methylation suppresses colon carcinogenesis by inducing tumor cell differentiation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE83589
Whole genome expression microarray analysis in hepatocellular carcinoma cell line, Huh7 cells, treated with siRNA targeting for nuclear factor 90 (siNF90)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

To identify genes regulated by complex of NF90 and nuclear factor 45 (NF45) in hepatocellular carcinoma, we performed comprehensive analyses of mRNA expression in Huh7 cells depleted of NF90.

Publication Title

Suppression of MicroRNA-7 (miR-7) Biogenesis by Nuclear Factor 90-Nuclear Factor 45 Complex (NF90-NF45) Controls Cell Proliferation in Hepatocellular Carcinoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP109649
Transcriptome profiling of mutants of CALMODULIN-LIKE (CML) family genes and CALMODULIN-BINDING PROTEIN 60 (CBP60) family genes in response to Pseudomonas syringae pv maculicola ES4326
  • organism-icon Arabidopsis thaliana
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We observed that mutations in CBP60a, CML46, CML47 and WRKY70 enhanced plant resistance to Pma likely through different mechanisms. To investigate their contributions to enhanced resistance at the transcriptome level, we designed this experiment to measure their response to Pma using the SMART-3Seq method. Overall design: Mature leaves of Arabidopsis plants of seven different genotypes were infiltrated with mock or Pma. Samples were collected 24 hours after treatment. Each experiment contains one sample consisted of two leaves for each genotype-treatment combination. In total three independent experiments were conducted.

Publication Title

WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1.

Sample Metadata Fields

Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact