refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 183 results
Sort by

Filters

Technology

Platform

accession-icon GSE5504
human peripheral blood derived monocytes, LPS stimulation time-series
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To evaluate gene expression in human peripheral blood derived monocytes over the course of an LPS stimulation time-series.

Publication Title

Statistical analysis of MPSS measurements: application to the study of LPS-activated macrophage gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36895
Molecular Genetic Classification of clear-cell Renal Cell Carcinoma (ccRCC) based on the Gene Expression Profiling of Tumors and Tumorgrafts deficient for BAP1 or PBRM1
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice exhibited similar gene expression profiling to corresponding primary tumors. Gene expression profiling of tumors and tumorgrafts displayed different signatures for BAP1- and PBRM1-deficient samples. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.

Publication Title

BAP1 loss defines a new class of renal cell carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon SRP125430
Proteotranscriptomic profiling of potential E6AP targets in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Prostate cancer is a common cause of cancer-related death in men. E6AP, an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo. However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumour suppressor targets of E6AP, promyelocytic leukemia protein and p27. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approaches. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were significantly altered upon knockdown of E6AP. Pathway analyses supported the known phenotypic effects of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein, commonly deregulated in prostate cancer, was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo. Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight into the potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP. Overall design: Examination of candidate targets regulated by E6AP at transcript level

Publication Title

Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP163035
CRISPR activation of long non-coding RNAs transiently expressed during cortical neuron differentiation associated with Field, et al, Stem Cell Reports 2018
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

4 transiently expressed long non-coding RNAs that were identified in human and non-human primate cortical organoid differentiation were activated out of context in HEK293FT cells using CRISPRa. Overall design: 5 sgRNAs targeting TrEx lncRNAs or non-targeting controls were co-transfected with dCas9-VP64 into HEK293FT cells. Successfully transfected cells were selected by puromycin at 24 hours and harvested for RNA at maximal expression, 48 hours post transfection. RNA-seq libraries were prepared in biological triplicates with the NEXTflex Rapid Directional qRNA-Seq Library Prep Kit (PerkinElmer).

Publication Title

Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE59325
Human perirenal adipose tissue
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of perirenal adipose tissue from healthy kidney donors (age 449 years, BMI 25.83.3 kg/m2, meanSD).

Publication Title

FTO Obesity Variant Circuitry and Adipocyte Browning in Humans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44685
Transcriptome during autoregulation of mycorrhization in soybean
  • organism-icon Glycine max
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

The autoregulation of mycorrhization (AOM) describes a plant regulatory mechanism that limits the number of infection events by arbuscular mycorrhizal fungi. The key signal mediator is a receptor kinase (GmNARK) that acts in the shoots. Early signals of the mycorrhizal symbiosis induce a root-derived signal that activates GmNARK in the shoot finally leading to a systemic repression of subsequent infections in the root. So far, less is known about the signals down-stream of GmNARK. To find genes regulated by GmNARK in a mycorrhiza-dependent as well as in a mycorrhiza-independent manner, we used the Affymetrix GeneChip for soybean. In general, mycorrhizal root systems consist of both colonized and non-colonized, but autoregulated roots. To physically separate those two root types for transcript analysis of specifically regulated genes, we used the split-root system. Transcript profiling during AOM was done with material of Bragg wild-type and of the nark mutant nts1007, either non-inoculated or partially inoculated with the mycorrhizal fungus Rhizophagus irregularis (formerly Glomus intraradices). Wild-type and nark mutants were inoculated with R. irregularis on one half of the root-systems (root-parts "A") only. The remaining half of the root-systems stayed non-infected (root-parts "B"). Corresponding controls stayed completely non-infected. Gene expression was analyzed in inoculated root-parts, non-inoculated root-parts and shoots of three individual plants per treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Sara Schaarschmidt. The equivalent experiment is GM53 at PLEXdb.]

Publication Title

Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon E-MEXP-1312
Transcription profiling by array of Drosophila mutant for ewg
  • organism-icon Drosophila melanogaster
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Ewg differentially regulated genes in 16-18 h Drosophila embryos. The experiment contains expression measurements from wild type, ewg l1 protein null allele and ewg l1 elavEWG (elavEWG rescue construct expressing a ewg cDNA from the elav promoter) mutants.

Publication Title

Erect wing regulates synaptic growth in Drosophila by integration of multiple signaling pathways.

Sample Metadata Fields

Age

View Samples
accession-icon GSE54928
Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27501
Quantitative Analysis of Alternative Spliced Variants in HNSCC
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Alternative splicing of pre-mRNA generates protein diversity and has been linked to cancer progression and drug response. Exon microarray technology enables genome-wide quantication of expression levels for the majority of exons and facilitates the discovery of alternative splicing events. Analysis of exon array data is more challenging than gene expression data and there is a need for reliable quantication of exons and alternative spliced variants. We introduce a novel, computationally efficient methodology, MEAP, for exon array data preprocessing, analysis and visualization. We compared MEAP with other preprocessing methods, and validation of the results show that MEAP produces reliable quantication of exons and alternative spliced variants. Analysis of data from head and neck squamous cell carcinoma (HNSCC) cell lines revealed several variants associated with 11q13 amplication, which is a predictive marker of metastasis and decreased survival in HNSCC patients. Together these results demonstrate the utility of MEAP in suggesting novel experimentally testable predictions. Thus, in addition to novel methodology to process large-scale exon array data sets, our results provide several HNSCC candidate genes for further studies.

Publication Title

Comprehensive exon array data processing method for quantitative analysis of alternative spliced variants.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE54926
Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing [Affymetrix]
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The eukaryotic cell cycle, driven by both transcriptional and post-translational mechanisms, is the central molecular oscillator underlying tissue growth throughout animals. While genome-wide studies have investigated cell cycle-associated transcription in unicellular systems, global patterns of periodic transcription in multicellular tissues remain largely unexplored. Here we define the cell cycle-associated transcriptome of the developing Drosophila wing epithelium and compare it with that of cultured Drosophila S2 cells, revealing a core set of periodic genes as well as a surprising degree of context-specificity in periodic transcription. We further employ RNAi-mediated phenotypic profiling to define functional requirements for over 300 periodic genes, with a focus on those required for cell proliferation in vivo. Finally, we investigate the role of novel genes required for interkinetic nuclear migration. Combined, these findings provide a global perspective on cell cycle control in vivo, and highlight a critical need to understand the context-specific regulation of cell proliferation.

Publication Title

Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact