refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 183 results
Sort by

Filters

Technology

Platform

accession-icon GSE33874
Identification of a Potential Ovarian Cancer Stem Cell Gene Expression Profile from Advanced Stage Papillary Serous Ovarian Cancer
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify the potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma

Publication Title

Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47763
STAT3 expression, activity and functional consequences of STAT3 inhibition in esophageal squamous cell carcinomas and Barretts adenocarcinomas
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Signal transducer and activator of transcription 3 (STAT3) is altered in several epithelial cancers and represents a potential therapeutic target. Here, STAT3 expression, activity and cellular functions were examined in two main histotypes of esophageal carcinomas. In situ, immunohistochemistry for STAT3 and STAT3-Tyr705 phosphorylation (P-STAT3) in esophageal squamous cell carcinomas (ESCC) and Barretts adenocarcinomas (BAC) revealed similar STAT3 expression in ESCCs and BACs, but preferentially activated P-STAT3 in ESCCs. In vitro, strong STAT3 activation was seen by EGF-stimulation in OE21 (ESCC) cells, whilst OE33 (BAC) cells showed constitutive weak STAT3 activation. STAT3 knockdown significantly reduced cell proliferation of OE21 and OE33 cells and reduced cell migration in OE33, but not in OE21 cells. Transcriptome analysis identified STAT3-knockdown associated down-regulation of cell cycle processes and the selective down-regulation of cyclins and cyclin dependent kinaes associated genes in both OE21 and OE33 cells. Moreover, the transcriptome response showed changes in cell migration/invasion related genes that correlated with the associated phenotype measurements. This study demonstrates the importance of STAT3 expression and activation in esophageal carcinomas, whereby the extent differs between ESCCs and BACs. STAT3 knockdown significantly reduces cell proliferation in both types of esophageal cancer cells and inhibits migration in BAC cells. Thus, STAT3 may be further exploited as potential novel therapeutic target for esophageal cancers.

Publication Title

STAT3 expression, activity and functional consequences of STAT3 inhibition in esophageal squamous cell carcinomas and Barrett's adenocarcinomas.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE44685
Transcriptome during autoregulation of mycorrhization in soybean
  • organism-icon Glycine max
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

The autoregulation of mycorrhization (AOM) describes a plant regulatory mechanism that limits the number of infection events by arbuscular mycorrhizal fungi. The key signal mediator is a receptor kinase (GmNARK) that acts in the shoots. Early signals of the mycorrhizal symbiosis induce a root-derived signal that activates GmNARK in the shoot finally leading to a systemic repression of subsequent infections in the root. So far, less is known about the signals down-stream of GmNARK. To find genes regulated by GmNARK in a mycorrhiza-dependent as well as in a mycorrhiza-independent manner, we used the Affymetrix GeneChip for soybean. In general, mycorrhizal root systems consist of both colonized and non-colonized, but autoregulated roots. To physically separate those two root types for transcript analysis of specifically regulated genes, we used the split-root system. Transcript profiling during AOM was done with material of Bragg wild-type and of the nark mutant nts1007, either non-inoculated or partially inoculated with the mycorrhizal fungus Rhizophagus irregularis (formerly Glomus intraradices). Wild-type and nark mutants were inoculated with R. irregularis on one half of the root-systems (root-parts "A") only. The remaining half of the root-systems stayed non-infected (root-parts "B"). Corresponding controls stayed completely non-infected. Gene expression was analyzed in inoculated root-parts, non-inoculated root-parts and shoots of three individual plants per treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Sara Schaarschmidt. The equivalent experiment is GM53 at PLEXdb.]

Publication Title

Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE15606
Whole genome transcription profile of antigen receptor activated B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

To search for rapid changes in gene expression following BCR activation, we performed DNA microarray analysis of activated splenic B cells with and without anti-IgM treatment for 3 hour. The expression of a remarkably large set of genes differed significantly.

Publication Title

Initiation of antigen receptor-dependent differentiation into plasma cells by calmodulin inhibition of E2A.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP041833
Evaluation of RNA amplification and RNA-Seq library preparation protocols for spermatozoa RNA profiling
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

RNA-Seq technique was applied to investigate the effects of four cDNA amplification kits and two RNA-Seq library preparation kits to the deep sequencing results at different perspectives. Overall design: The same set of semen samples were applied to investigate the qualitative and quantitative effect of four cDNA amplification methods and two RNA-Seq library preparation methods on sperm transcript profiling.

Publication Title

A comparison of sperm RNA-seq methods.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE101102
Gene expression response to altered gravity, simulated gravity and hypergravity in human T cells
  • organism-icon Homo sapiens
  • sample-icon 87 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE94256
Dynamic gene expression response to altered gravity in human T cells
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dynamic gene expression response to altered gravity in human T cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE94255
Dynamic gene expression response to altered gravity in human T cells (sounding rocket flight)
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We investigated differentially regulated genes in human Jurkat T lymphocytic cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.

Publication Title

Dynamic gene expression response to altered gravity in human T cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE101101
Gene expression response to simulated gravity and hypergravity in human T cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We investigated differentially regulated and stably expressed genes in human Jurkat T lymphocytic cells in 5min simulated microgravity and hypergravity and compared expression profiles to identify gravity-regulated and unaffected genes as well as adaptation processes.

Publication Title

Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE94253
Dynamic gene expression response to altered gravity in human T cells (parabolic flight)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We investigated differentially regulated genes in human Jurkat T lymphocytic cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.

Publication Title

Dynamic gene expression response to altered gravity in human T cells.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact