refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 72 results
Sort by

Filters

Technology

Platform

accession-icon GSE75285
mRNA, miRNA and SNP profiles of 50 HB tumors
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE75271
mRNA profiles of 50 HB tumors
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatoblastoma (HB) is the most common liver cancer in children, but few pre-treatment tumors have been molecularly profiled. Consequently, there are no validated prognostic or therapeutic biomarkers for HB patients. We report on molecular analysis of 88 clinically-annotated HB tumors. This analysis pointed to three risk-stratifying molecular subtypeslow, intermediate and high riskthat are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways. High-risk tumors are characterized by high NFE2L2 activity and LIN28B, HMGA2, SALL4 and AFP expression, low let-7 expression and HNF1A activity, and high coordinated expression of oncofetal proteins and stem cell markers. Tests on a 35 HB validation set supported these genes as prognostic biomarkers.

Publication Title

Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.

Sample Metadata Fields

Sex, Specimen part, Race

View Samples
accession-icon GSE4711
Developmental changes in RNP and Polysome associated mRNAs in Mouse testes
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Gametes rely heavily on post-transcriptional control mechanisms to regulate their differentiation. In eggs, the storage and selective temporal activation of maternal mRNAs is essential for normal development. In the male, transcription ceases during spermiogenesis necessitating the post-transcriptional regulation of many paternal mRNAs required for spermatid differentiation and spermatozoan function. Messenger RNAs that are being actively translated form polysomes. whereas translationally inactive mRNAs are often sequestered in ribonucleoproteins (RNPs). Here we combine polysome display and microarray analyses of RNP and polysome fractions of testes from prepuberal and adult mice to characterize the translation state of individual mRNAs as spermatogenesis proceeds.. Consistent with published reports, many post-meiotic mRNAs known to be translationally delayed shift from the RNPs into the polysomes, confirming the validity of this approach. In addition, based upon the criterion of movement from RNPs to polysomes, we detect another 742 mouse testicular genes showing dramatic shifts between RNPs and polysomes. One sub-group of 35 genes including the known translationally delayed Pgk2, are initially transcribed and translationally repressed in meiotic spermatocytes, and translated post-meiotically. This high-through-put approach defines the changing translation patterns of a large number of genes as male germ cells differentiate and identifies a new group of post-transcriptionally regulated meiotic transcripts for future study.

Publication Title

Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62167
Expression data from the T-DNA insertion line atpip1;2-1
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

Some aquaporins do not show a pronounced function as water diffusion facilitators but act as small molecule transport facilitators for substances such as urea, glycerol, boron or gases such as CO2 . Transcriptome analysis provided distinguishable, specific profiles for water stress or for conditions of increased or decreased CO2 concentrations

Publication Title

T-DNA insertion in aquaporin gene AtPIP1;2 generates transcription profiles reminiscent of a low CO2 response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP069083
Canalization of gene expression is a major signature of regulatory cold adaptation in temperate "Drosophila melanogaster"
  • organism-icon Drosophila melanogaster
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome analysis may provide means to investigate the underlying genetic causes of shared and divergent phenotypes in different populations and help to identify potential targets of adaptive evolution. Applying RNA sequencing to whole male Drosophila melanogaster from the ancestral tropical African environment and a very recently colonized cold-temperate European environment at both standard laboratory conditions and following a cold shock, we seek to uncover the transcriptional basis of cold adaptation. In both the ancestral and the derived populations, the predominant characteristic of the cold shock response is the swift and massive upregulation of heat shock proteins and other chaperones. Although we find ~30% of the genome to be differentially expressed following a cold shock, only relatively few genes (n=26) are up- or down-regulated in a population-specific way. Intriguingly, 24 of these 26 genes show a greater degree of differential expression in the African population. Likewise, there is an excess of genes with particularly strong cold-induced changes in expression in Africa on a genome-wide scale. The analysis of the transcriptional cold shock response most prominently reveals an upregulation of components of a general stress response, which is conserved over many taxa and triggered by a plethora of stressors. Despite the overall response being fairly similar in both populations, there is a definite excess of genes with a strong cold-induced fold-change in Africa. This is consistent with a detrimental deregulation or an overshooting stress response. Thus, the canalization of European gene expression might be responsible for the increased cold tolerance of European flies. Overall design: mRNA profiles of whole Drosophila melanogaster adult males from a Africa (4 lines) and Europe (4 lines) during a 7h cold shock experiment. Samples include room temperature controls, 3.5h into the cold shock, 15 minutes after recovery and 90 minutes after recovery. 2 biological replicates each.

Publication Title

Canalization of gene expression is a major signature of regulatory cold adaptation in temperate Drosophila melanogaster.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon SRP047487
mRNA- and RISC-sequencing of mouse hearts overexpressing miR-378a
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Rationale: MicroRNAs play key roles in hypertrophic stress responses. miR-378(-3p) is a highly abundant, cardiomyocyte-enriched microRNA whose downregulation in pressure-overload has been suggested as detrimental to the heart. Previous studies have utilized systemic anti-miR or microRNA-encoding virus administration, and thus questions regarding the cardiomyocyte-autonomous roles of miR-378 remain. Objective: To examine whether persistent overexpression of miR-378 in cardiomyocytes alters the phenotype of the unstressed heart, whether its overexpression is beneficial or deleterious in the setting of pressure-overload, and to comprehensively identify its cardiomyocyte-specific effects on mRNA regulation. Methods and Results: Cardiac function was compared in young (10-12 week-old) mice overexpressing miR-378 in the heart under the control of the Myh6 promoter (alphaMHC-miR-378 mice), in older (40 week-old) mice and their age-matched wild-type controls. Older alphaMHC-miR-378 mice exhibited decreased fractional shortening and modest chamber dilation with an increase in cardiomyocyte length. When subjected to pressure-overload, cardiomyocyte length was increased in young alphaMHC-miR-378 mice, but fractional shortening declined precipitously over two weeks. Transcriptome profiling of wild-type and alphaMHC-miR-378 hearts in unstressed and pressure-overload conditions revealed dysregulation of several upstream metabolic and mitochondrial genes in alphaMHC-miR-378 hearts, compromising the reprogramming that occurs during early adaptation to pressure overload. Ago2 immunoprecipitation with mRNA sequencing revealed novel miR-378 cardiac mRNA targets including Akt1 and Epac2 and demonstrated the contextual nature of previously described miR-378 targeting events. Conclusions: Long-term upregulation of miR-378 levels in the heart is not innocuous and exacerbates contractile dysfunction in pressure-overload hypertrophy through numerous signaling mechanisms. Overall design: Cardiac polyadenylated RNA (mRNA) or RISC-seq (total RNA-seq of Ago2 immunoprecipitate) profiles were generated from nontransgenic and transgenic mouse hearts of FVB/N background, on Illumina HiSeq 2000 instruments. Male mice 8-12 weeks of age were used in these studies, and subjected to sham surgery or 2 weeks of pressure-overload via transverse aortic constriction (TAC). 3 nontransgenic sham, 3 transgenic sham, 7 nontransgenic TAC, 7 transgenic TAC, each with mRNA-seq and RISC-seq data.

Publication Title

Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP052702
mRNA- and RISC-sequencing of mouse hearts overexpressing miR-133a
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

miR-133a-3p is a highly abundant cardiomyocyte-enriched microRNA whose expression is persistently decreased in response to pressure overload (or transverse aortic constriction, TAC) in mice. Overexpression of miR-133a in cardiomyocytes of mouse hearts in vivo (under the control of the Myh6 promoter) decreases pressure overload-induced apoptosis and fibrosis. In previous studies using microarray platforms, we detected numerous mRNAs whose transcript levels were altered by either or both of miR-133a overexpression and pressure overload. The data set presented here builds upon our previous study in these mice by examining mRNA-RISC associations (using Ago2-immunoprecipitated RNA) and global mRNA abundances via RNA-sequencing procedures, and tests the hypothesis that mRNAs targeted by overexpressed miR-133a are dissimilar between sham and TAC contexts. Overall design: Cardiac polyadenylated RNA (mRNA) profiles were generated from nontransgenic and transgenic mouse hearts of FVB/N background, on Illumina HiSeq 2000 instruments. Male mice 8-12 weeks of age were used in these studies, and subjected to sham surgery or 1 week of pressure-overload via transverse aortic constriction (TAC). 3 nontransgenic sham, 7 transgenic sham, 5 nontransgenic TAC, 4 transgenic TAC, each with mRNA-seq and RISC-seq (mRNA-seq of Ago2 immunoprecipitate) data.

Publication Title

Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61120
Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The in-vitro analysis of the hypomethylation of the imprinting control region 1 (ICR1) within the IGF2/H19 locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome (SRS).

Publication Title

Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP137807
Foxf2 plays a dual role during TGFb-induced EMT by promoting apoptosis yet enabling cell junction dissolution and migration.
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We have identified the transcription factor forkhead box protein F2 (Foxf2) to be upregulated in its expression during the EMT process and studied its functional contribution to EMT by siRNA-mediated knockdown in NMuMG cells treated for 4 days with TGFbeta followed by mRNA-sequencing. Our analysis revealed a dual role of Foxf2 during TGFbeta-induced EMT in promoting apoptosis while inducing cell junction breakdown and migration. Overall design: mRNA sequencing of NMuMG/E9 cells transfected with control siRNA or Foxf2 specific siRNA and treated with TGFbeta for 4 days

Publication Title

Foxf2 plays a dual role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE17814
Role of zyxin in the tension-induced expression change in endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

One of the hallmarks in hypertension is a pressure-induced change in endothelial cell phenotype. A cytoskeletal protein zyxin, which was seen to translocate from focal adhesion contacts to the nucleus in response to the increased wall tensionis, mediates the tension-induced endothelial signaling.

Publication Title

Zyxin mediation of stretch-induced gene expression in human endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact