refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 88 results
Sort by

Filters

Technology

Platform

accession-icon GSE18153
Effect of deuterium oxide on Arabidopsis gene expression
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

2H2O has a long history as a protein or amino acid labeling techinique, and such labeling systems have proven effective for many different types of studies. A disadvantage of a 2H2O labeling system is that plant growth is inhibited as the percentage of deuterium in the medium increases. However the molecular effects of 2H2O on plant growth has not previoulsly been investigated.

Publication Title

Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42389
Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a novel player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.

Publication Title

Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP074067
Effect of high fat diet on the rat germ cell transcriptome
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

PURPOSE: To examine if a parental high fat diet (HFD) influences metabolic health in two generations of offspring, and alters the germ cell (GC) transcriptome. PROCEDURE: GC-eGFP Sprague Dawley rats were weaned onto HFD (45% fat) or Control Diet (CD; 10% fat). After metabolic testing, founders (F0) were bred with controls, establishing the F1 generation. Germ cells from F0 males were isolated and their RNA sequenced. F1 rats were bred with control rats at 17 weeks to generate F2 offspring. FINDINGS: HFD resulted in 9.7% and 14.7% increased weight in male and female F0 respectively. F1 offspring of HFD mothers were heavier than controls. F1 daughters of HFD-fed males were also heavier. F2 male offspring derived from HFD-fed maternal grandfathers were 7.2% heavier, and exhibited increases of 31% in adiposity, 97% in plasma leptin and 300% in luteinising hormone to testosterone ratio. HFD exposure did not alter the F0 GC transcriptome. CONTROLS: Matched CD was consumed by all animals not consuming the HFD. Animals were compared to a parallel cohort of CD rats. CONCLUSIONS: HFD consumption by maternal grandfathers results in a disrupted metabolic phenotype in grandsons. This effect is not mediated by alterations to the GC transcriptome. Overall design: Male rats high fat diet vs. control diet. 4 replicates per condition. SmallRNA seq and mRNAseq for each replicate and condition

Publication Title

High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38333
Genome-wide effects of Pbcas4 knockdown
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We tested the effect iof Pbcas4 knockdown using a specific shRNA on the expression of genes sharing miRNA binding sites in mouse N2A cells.

Publication Title

Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE7142
Gene expression data from hypothalamic hamartomas (HH) obtained from patients with or without precocious puberty (CPP)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Hypothalamic hamartomas (HHs) are congenital lesions of the neuroendocrine brain composed of neurons and astroglia. Frequently, HHs are associated with central precocious puberty (CPP) and/or gelastic seizures. Because HHs might express genes similar to those required for the initiation of normal puberty we used cDNA arrays to compare the gene expression profile of a HH associated with CPP with three HHs not accompanied by sexual precocity. Our aim was to identify genes whose expression may be selectively altered in the HH with CPP and hence, involved in the onset of puberty.

Publication Title

Gene expression profiling of hypothalamic hamartomas: a search for genes associated with central precocious puberty.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2565
Phosgene exposure in the mouse lung
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Carbonyl chloride (phosgene) is a toxic industrial compound (TIC) widely used in industry for the production of synthetic products, such as polyfoam rubber, plastics, and dyes. Exposure to phosgene results in a latent (1-24 hr), potentially life-threatening pulmonary edema and irreversible acute lung injury. A genomic approach was utilized to investigate the molecular mechanism of phosgene-induced lung injury. CD-1 male mice were exposed whole-body to either air or a concentration x time (c x t) amount of 32 mg/m3 (8 ppm) phosgene for 20 min (640 mg x min/m3). Lung tissue was collected from air- or phosgene-exposed mice at 0.5, 1, 4, 8, 12, 24, 48, and 72 hr post-exposure. RNA was extracted from the lung and used as starting material for the probing of oligonucleotide microarrays to determine changes in gene expression following phosgene exposure. The data were analyzed using principal component analysis (PCA) to determine the greatest sources of data variability. A three-way analysis of variance (ANOVA) based on exposure, time, and sample was performed to identify the genes most significantly changed as a result of phosgene exposure. These genes were rank ordered by p-values and categorized based on molecular function and biological process. Some of the most significant changes in gene expression reflect changes in glutathione synthesis and redox regulation of the cell, including upregulation of glutathione S-transferase alpha-2, glutathione peroxidase 2, and glutamate-cysteine ligase, catalytic subunit (also known as -glutamyl cysteine synthetase). This is in agreement with previous observations describing changes in redox enzyme activity after phosgene exposure. We are also investigating other pathways that are responsive to phosgene exposure to identify mechanisms of toxicity and potential therapeutic targets.

Publication Title

Genomic analysis of murine pulmonary tissue following carbonyl chloride inhalation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045422
Single cell RNA-seq analysis of mature thymic epithelial cells
  • organism-icon Mus musculus
  • sample-icon 155 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

This study set out to assay the (polyA+) transcriptomes of single mature (MHCII high) mouse medullary thymic epithelial cells (mTEC). Overall design: Following isolation by FACs, the transcriptomes of single mature mTEC was assayed using the Fluidigm C1 microfluidics platform and Illumina RNA-seq.

Publication Title

Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1888
Bis-(2-chloroethyl) sulfide exposure time course and dose response in the rat lung
  • organism-icon Rattus norvegicus
  • sample-icon 153 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Male Sprague-dawley rats were exposed to saline, isopropyl alcohol, 1mg/kg, 3mg/kg or 6 mg/kg sulfur mustard for 30 min, 1 hr, 3 hr, 6 hr, or 24 hr before analysis of lung tissue by oligonucleotide array analysis.

Publication Title

Genomic analysis of rodent pulmonary tissue following bis-(2-chloroethyl) sulfide exposure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033579
Gene expression in thymic epithelial cells [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

This study set out to assay the (polyA+) transcriptomes of specific FACS sorted populations of mouse thymic epithelial cells (TEC). Overall design: Two biological replicates of each of seven murine TEC populations were FACS sorted and sequenced.

Publication Title

Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29643
The transcription factor cyclic AMPresponsive elementbinding protein H regulates triglyceride metabolism
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Here we report that the transcription factor cyclic AMPresponsive elementbinding protein H (CREB-H, encoded by CREB3L3) is required for the maintenance of normal plasma triglyceride concentrations. CREB-Hdeficient mice showed hypertriglyceridemia secondary to inefficient triglyceride clearance catalyzed by lipoprotein lipase (Lpl), partly due to defective expression of the Lpl coactivators Apoc2, Apoa4 and Apoa5 and concurrent augmentation of the Lpl inhibitor Apoc3. We identified multiple nonsynonymous mutations in CREB3L3 that produced hypomorphic or nonfunctional CREB-H protein in humans with extreme hypertriglyceridemia, implying a crucial role for CREB-H in human triglyceride metabolism.

Publication Title

The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact