refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 88 results
Sort by

Filters

Technology

Platform

accession-icon SRP074067
Effect of high fat diet on the rat germ cell transcriptome
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

PURPOSE: To examine if a parental high fat diet (HFD) influences metabolic health in two generations of offspring, and alters the germ cell (GC) transcriptome. PROCEDURE: GC-eGFP Sprague Dawley rats were weaned onto HFD (45% fat) or Control Diet (CD; 10% fat). After metabolic testing, founders (F0) were bred with controls, establishing the F1 generation. Germ cells from F0 males were isolated and their RNA sequenced. F1 rats were bred with control rats at 17 weeks to generate F2 offspring. FINDINGS: HFD resulted in 9.7% and 14.7% increased weight in male and female F0 respectively. F1 offspring of HFD mothers were heavier than controls. F1 daughters of HFD-fed males were also heavier. F2 male offspring derived from HFD-fed maternal grandfathers were 7.2% heavier, and exhibited increases of 31% in adiposity, 97% in plasma leptin and 300% in luteinising hormone to testosterone ratio. HFD exposure did not alter the F0 GC transcriptome. CONTROLS: Matched CD was consumed by all animals not consuming the HFD. Animals were compared to a parallel cohort of CD rats. CONCLUSIONS: HFD consumption by maternal grandfathers results in a disrupted metabolic phenotype in grandsons. This effect is not mediated by alterations to the GC transcriptome. Overall design: Male rats high fat diet vs. control diet. 4 replicates per condition. SmallRNA seq and mRNAseq for each replicate and condition

Publication Title

High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38333
Genome-wide effects of Pbcas4 knockdown
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We tested the effect iof Pbcas4 knockdown using a specific shRNA on the expression of genes sharing miRNA binding sites in mouse N2A cells.

Publication Title

Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE7142
Gene expression data from hypothalamic hamartomas (HH) obtained from patients with or without precocious puberty (CPP)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Hypothalamic hamartomas (HHs) are congenital lesions of the neuroendocrine brain composed of neurons and astroglia. Frequently, HHs are associated with central precocious puberty (CPP) and/or gelastic seizures. Because HHs might express genes similar to those required for the initiation of normal puberty we used cDNA arrays to compare the gene expression profile of a HH associated with CPP with three HHs not accompanied by sexual precocity. Our aim was to identify genes whose expression may be selectively altered in the HH with CPP and hence, involved in the onset of puberty.

Publication Title

Gene expression profiling of hypothalamic hamartomas: a search for genes associated with central precocious puberty.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045422
Single cell RNA-seq analysis of mature thymic epithelial cells
  • organism-icon Mus musculus
  • sample-icon 155 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

This study set out to assay the (polyA+) transcriptomes of single mature (MHCII high) mouse medullary thymic epithelial cells (mTEC). Overall design: Following isolation by FACs, the transcriptomes of single mature mTEC was assayed using the Fluidigm C1 microfluidics platform and Illumina RNA-seq.

Publication Title

Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033579
Gene expression in thymic epithelial cells [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

This study set out to assay the (polyA+) transcriptomes of specific FACS sorted populations of mouse thymic epithelial cells (TEC). Overall design: Two biological replicates of each of seven murine TEC populations were FACS sorted and sequenced.

Publication Title

Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP030027
Next generation sequencing of advanced non-castrate prostate cancer treated with docetaxel chemotherapy
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Early chemotherapy for advanced/metastatic non-castration resistant prostate cancer (PCa) may improve overall patient survival. We studied the safety, tolerability and early efficacy of up-front docetaxel chemotherapy and androgen deprivation therapy (ADT) versus ADT alone for patients with newly-diagnosed advanced/metastatic PCa. As proof of concept, we undertook in vivo gene expression profiling by next generation RNA sequencing (RNA-Seq). Overall design: Tumour biposies from 6 patients were taken before and after treatment with combined ADT and docetaxcel for 6 weeks

Publication Title

Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP026387
The Wnt/ß-catenin-signaling pathway is modulated by androgen ablation therapy for advanced clinical prostate cancer and contributes to androgen independent cell growth
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Androgen ablation therapy (AAT) is standard treatment for locally-advanced/metastatic prostate cancer (PCa). Many patients develop castration-resistance (CRPCa) after ~2-3 years, with a poor prognosis. The molecular mechanisms underlying CRPCa progression are unclear. mRNA-Seq was performed on tumours from 7 patients with locally-advanced/metastatic PCa before and ~22 weeks after AAT initiation. Differentially regulated genes were identified in treatment pairs. Overall design: Tumour biopsies from 7 patients were taken before and after AAT treatment

Publication Title

Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE42389
Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a novel player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.

Publication Title

Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22176
Vitamin D and Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE22174
Vitamin D and Gene Expression [A690]
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide expression analysis of hapmap lymphoblastoid and ENCODE project cell lines stimulated with calcitriol

Publication Title

A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.

Sample Metadata Fields

Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact