refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 394 results
Sort by

Filters

Technology

Platform

accession-icon GSE69340
Expression data from cerebral cortices of bacTRAP transgenic mice
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarrays of eight different cell types in cortex to conduct specificity index analysis for detailed cell type specific molecular profile.

Publication Title

Layer 2/3 pyramidal cells in the medial prefrontal cortex moderate stress induced depressive behaviors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56996
Comparative analysis of different cortical interneuron groups.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

GABAergic interneuron in the cortex comprise a very heterogenous group. and it is critical to identify discrete interneuron types to understand how their contributions to behavior can be modulated by external and internal cues. However, molecular difinition of these interneuron cell groups has been difficult. Comparative analysis of different interneuron subtypes can provide us new candidate marker genes which could target more specific interneuon cell group. Here we identify oxytocin responsive novel class of interneuron through our comparative analysis.

Publication Title

Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP100940
5-hydroxymethylcytosine Accumulation in Postmitotic Neurons Results in Functional Demethylation of Expressed Genes [nuclear RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

5-hydroxymethylcytosine (5hmC) occurs at maximal levels in postmitotic neurons where its accumulation is cell specific and correlated with gene expression. Here we demonstrate that the distribution of 5hmC in CG and non-CG dinucleotides is distinct, and that it reflects the binding specificity and genome occupancy of methylcytosine binding protein 2 (MeCP2). In expressed gene bodies, accumulation of 5hmCG acts in opposition to 5mCG resulting in “functional” demethylation and diminished MeCP2 binding, thus facilitating transcription. Non-CG hydroxymethylation occurs predominantly in CA dinucleotides (5hmCA) and it accumulates in regions flanking active enhancers. In these domains, oxidation of 5mCA to 5hmCA does not alter MeCP2 binding or expression of adjacent genes. We conclude that the role of 5-hydroxymethylcytosine in postmitotic neurons is to functionally demethylate expressed gene bodies while retaining the role of MeCP2 in chromatin organization. Overall design: Examination of genome wide cytosine methylation and hydroxymethylation per context in cerebellar granule cells and their function in MeCP2 binding. Nuclear RNA-Seq dataset.

Publication Title

5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP163144
Cyp2b-null male mice are susceptible to high-fat diet-induced obesity due to changes in PUFA metabolism and response to hepatic lipids as measured by RNAseq
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To investigate the role of CYP2B in lipid metabolism, a Cyp2b triple knockout mouse lacking Cyp2b9, Cyp2b10, and Cyp2b13 was developed using CRISPER/Cas9. Wildtype (WT) and Cyp2b-null mice were fed a normal diet (ND) or a 60% high-fat diet (HFD) for 10 weeks. RNA was extracted from the livers of male and female mice from all treatment groups and used for RNA seqencing. RNAseq data demonstrated that hepatic gene expression in ND-fed Cyp2b-null male mice is similar to HFD-fed WT mice, indicating that Cyp2b-null male mice are reacting as if they are receiving a HFD even if they are not. Gene ontology and KEGG pathways show perturbations in lipid metabolism pathways, including PUFA metabolism, fatty acid elongation, and glycerophospholipid metabolism. Overall design: Use RNA-sequencing to investigate the role of Cyp2b in hight-fat diet-induced obesity on a transcriptomic level, by comparing the livers of WT and Cyp2b-null mice fed a HFD for 10 weeks using Illumina technology.

Publication Title

Cyp2b-null male mice are susceptible to diet-induced obesity and perturbations in lipid homeostasis.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP113619
Species and Cell-Type Properties of Classically Defined Human and Rodent Neurons and Glia [Human RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression events in specific cell types in a broad range of species. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping, quantitative PCR, and immunofluorescence localization. Studies of sixteen human postmortem brains revealed cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event experienced by three donors. Our data establish a comprehensive approach for analysis of unique molecular events associated with specific circuits and cell types in a wide variety of human conditions. Overall design: RNA purified from nuclei or cytoplasm from mouse, rat, or human cerebellum. ATAC-seq was also performed using cerebellar nuclei from the three species.

Publication Title

Species and cell-type properties of classically defined human and rodent neurons and glia.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP113621
Species and Cell-Type Properties of Classically Defined Human and Rodent Neurons and Glia [Mouse RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, NextSeq 500

Description

Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression events in specific cell types in a broad range of species. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping, quantitative PCR, and immunofluorescence localization. Studies of sixteen human postmortem brains revealed cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event experienced by three donors. Our data establish a comprehensive approach for analysis of unique molecular events associated with specific circuits and cell types in a wide variety of human conditions. Overall design: RNA purified from nuclei or cytoplasm from mouse, rat, or human cerebellum. ATAC-seq was also performed using cerebellar nuclei from the three species.

Publication Title

Species and cell-type properties of classically defined human and rodent neurons and glia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE35766
Identification of the cortical neurons that mediate antidepressant responses
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35758
Comparative analysis of S100a10 and Glt25d2 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35751
Comparative analysis of S100a10-expressing cortical pyramidal cells and whole cortex
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35761
Effect of fluoxetine treatment on translational profiles of S100a10 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact