refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 83 results
Sort by

Filters

Technology

Platform

accession-icon SRP052978
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and cardiac-specific Bmi1 deletion [human]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

To explore the primary cause of Dilated Cardiomyopathy in heart samples from DCM-diagnosed patients who had undergone heart transplant (hDCM), we set out to identify differentially expressed genes by massively parallel sequencing of heart samples. Overall design: Methods: Heart mRNA profiles from DCM-diagnosed patients who had undergone heart transplant (hDCM) were generated by deep sequencing, in triplicate, using Illumina GAIIx.

Publication Title

Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP051396
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and cardiac-specific Bmi1 deletion [mouse]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

To explore the primary cause of Dilated Cardiomyopathy in Bmi1-null mice, we set out to identify differentially expressed genes by massively parallel sequencing of heart samples from Bmi1f/f;aMHCTM-Cretg/+ mice versus aMHCTM-Cretg/+ control mice (17 weeks postinduction). Overall design: Methods: Heart mRNA profiles of 17-weeks post-induction Bmi1f/f; MHCTM-Cretg/+ mice and MHCTM-Cretg/+ control mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. Sequence reads were pre-processed with Cutadapt 1.2.1, to remove TruSeq adapters and mapped on the mouse transcriptome (Ensembl gene-build GRCm38.v70) using RSEM v1.2.3. The Bioconductor package EdgeR was used to normalize data with TMM and to test for differential expression of genes using GLM.

Publication Title

Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54483
Colorectal cancer classification based on gene expression is not associated with FOLFIRI response
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Sadanandam et al. (2013) recently published a study based on the use of microarray data to classify colorectal cancer (CRC) samples. The classification claimed to have strong clinical implications, as reflected in the paper title: A colorectal cancer classification system that associates cellular phenotype and responses to therapy. They defined five subtypes: (i) inflammatory; (ii) goblet-like; (iii) enterocyte; (iv) transit-amplifying; and (v) stem-like. Based on drug sensitivity data from 21 patients, they also reported that the so-called stem-like subtype show differential sensitivity to FOLFIRI. This is the key result in their publication, since it implies a direct relation between the subtype and the choice of CRC therapy (i.e. FOLFIRI response). However, our analyses using the same drug sensitivity data and results from additional patients showed that the CRC classification reported by Sadanandam et al. is not predictive of FOLFIRI response.

Publication Title

Colorectal cancer classification based on gene expression is not associated with FOLFIRI response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45044
Age-mediated transcriptomic changes in adult mouse brain ventral tegmental area
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. However, ventral tegmental area (VTA), a region adjacent to SNpc, is less affected in PD. Until now, molecular mechanisms behind VTA aging have not been fully investigated using high throughput techniques.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45043
Age-mediated transcriptomic changes in adult mouse substantia nigra
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45045
Age-mediated transcriptomic changes in adult mouse substantia nigra and ventral tegmental area
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP100172
Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Impaired DNA replication is a hallmark of cancer and a cause of genomic instability. We report that, in addition to causing genetic change, impaired DNA replication during embryonic development can have major epigenetic consequences for a genome. In a genome-wide screen, we identified impaired DNA replication as causing increased expression from a repressed transgene in Caenorhabditis elegans. The acquired expression state behaved as an “epiallele,” being inherited for multiple generations before fully resetting. Derepression was not restricted to the transgene but was caused by a global reduction in heterochromatin-associated histone modifications due to the impaired retention of modified histones on DNA during replication in the early embryo. Impaired DNA replication during development can therefore globally derepress chromatin, creating new intergenerationally inherited epigenetic expression states. Overall design: 3 replicates of div-1 mutant worms and N2 wild type worms

Publication Title

Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE25745
Cranberry derived proanthocyanidins induce a state of iron-limitation in uropathogenic Escherichia coli CFT073 as revealed by microarray analysis
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Transcriptional profiles of uropathogenic Escherichia coli CFT073 exposed to cranberry-derived proanthocyanidins (PACs) were determined. Our results indicate that bacteria grown on media supplemented with PACs were iron-deprived. To our knowledge, this is the first time that PACs have been shown to induce a state of iron-limitation in this bacterium.

Publication Title

Induction of a state of iron limitation in uropathogenic Escherichia coli CFT073 by cranberry-derived proanthocyanidins as revealed by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26931
Mixed Culture Gene Expression of E. coli and Pseudomonas aeruginosa
  • organism-icon Escherichia coli, Pseudomonas aeruginosa pao1
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Transcriptional profiles of Escherichia coli MG1655 in mixed culture with Pseudomonas aeruginosa PAO1 showed a number of E. coli genes to be upregulated including purA-F and other genes associated with purine synthesis. In contrast, genes associated with pyrimidine synthesis were unaffected. Competition experiments in both planktonic and biofilm cultures, using three purine synthesis mutants, purD, purH, and purT showed little difference in E. coli survival from the parent strain. As purines are components of the cell signals, cAMP and c-di-GMP, we conducted competition experiments with E. coli mutants lacking adenylate cyclase (cyaA), cAMP phosphodiesterase (cpdA), and the catabolite receptor protein (crp), as well as ydeH, an uncharacterized gene that has been associated with c-di-GMP synthesis. Survival of the cyaA and crp mutants during co-culture were significantly less than the parent strain. Supplementation of the media with 1mM cAMP could restore survival of the cyaA mutant but not the crp mutant. In contrast, survival of the cpdA mutant was similar to the parent strain. Survival of the ydeH mutant was moderately less than the parent, suggesting that cAMP has more impact on E. coli mixed culture growth than c-di-GMP. Addition of 1 mM indole restored the survival of both the cyaA and crp mutations. Mutants in genes for tryptophan synthesis (trpE) and indole production (tnaA) showed a loss of competition and recovery through indole supplementation, comparable to the cyaA and crp mutants. Overall, these results suggest indole and cAMP as major contributing factors to E. coli growth in mixed culture.

Publication Title

Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26932
Mixed Culture Gene Expression of E. coli and Pseudomonas aeruginosa grown on defined media with N-acetyl glucosamine
  • organism-icon Escherichia coli str. k-12 substr. mg1655, Pseudomonas aeruginosa pao1
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Transcriptional profiles of Escherichia coli MG1655 in mixed culture with Pseudomonas aeruginosa PAO1 showed a number of E. coli genes to be upregulated including purA-F and other genes associated with purine synthesis. In contrast, genes associated with pyrimidine synthesis were unaffected. Competition experiments in both planktonic and biofilm cultures, using three purine synthesis mutants, purD, purH, and purT showed little difference in E. coli survival from the parent strain. As purines are components of the cell signals, cAMP and c-di-GMP, we conducted competition experiments with E. coli mutants lacking adenylate cyclase (cyaA), cAMP phosphodiesterase (cpdA), and the catabolite receptor protein (crp), as well as ydeH, an uncharacterized gene that has been associated with c-di-GMP synthesis. Survival of the cyaA and crp mutants during co-culture were significantly less than the parent strain. Supplementation of the media with 1mM cAMP could restore survival of the cyaA mutant but not the crp mutant. In contrast, survival of the cpdA mutant was similar to the parent strain. Survival of the ydeH mutant was moderately less than the parent, suggesting that cAMP has more impact on E. coli mixed culture growth than c-di-GMP. Addition of 1 mM indole restored the survival of both the cyaA and crp mutations. Mutants in genes for tryptophan synthesis (trpE) and indole production (tnaA) showed a loss of competition and recovery through indole supplementation, comparable to the cyaA and crp mutants. Overall, these results suggest indole and cAMP as major contributing factors to E. coli growth in mixed culture.

Publication Title

Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact