refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 125 results
Sort by

Filters

Technology

Platform

accession-icon GSE38021
Expression profiling by array in ATLL
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we have shown that an AP-1 family member Fra-2, which is hardly expressed in normal mature T cells, is consistently over-expressed in adult T-cell leukemia/lymphoma (ATLL), and together with JunD, upregulates CCR4 and many other genes including proto-oncogenes c-Myb, MDM2, Bcl-6, and SOX4. SOX4 is frequently overexpressed in many solid tumors and considered to be a potential oncogene.

Publication Title

SOX4 is a direct target gene of FRA-2 and induces expression of HDAC8 in adult T-cell leukemia/lymphoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE63626
Global gene expression analysis of human fibroblasts from whole body
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their phenotypical diversity has not been sufficiently explored. The aim of this study was to elucidate the phenotypical diversity of human fibroblasts within the whole body.

Publication Title

Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE10365
Expression Data from NKDxIL15tg and IL15 tg NK cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NK cells from NKDxIL15tg mice spleens and bone marrow were purified by FACS. NK cells from IL15tg mice spleens were purified by FACS.

Publication Title

Distal-less homeobox transcription factors regulate development and maturation of natural killer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53059
Human Subperitoneal Fibroblasts and Cancer Cell Interaction Creates Microenvironment Enhancing Tumor Progression and Metastasis
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Fibroblasts isolated from human colon submucosal and subperitoneal layer were stimulated by colon cancer cell line (DLD-1) cultured medium. Peritoneal invasion in colon cancer is an important prognostic factor, and the fibrosis with -SMA was a significant pathological feature of the cancer microenvironment formed by peritoneal invasion (CMPI).

Publication Title

Human subperitoneal fibroblast and cancer cell interaction creates microenvironment that enhances tumor progression and metastasis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP043666
RNA Sequencing Quantitative Analysis and identification of RNA editing sites of Wild Type and ADAR1 editing deficient (ADAR1E861A) murine fetal liver RNA
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: RNA editing by ADAR1 is essential for hematopoietic development. The goals of this study were firstly, to identify ADAR1-specific RNA-editing sites by indentifying A-to-I (G) mismatches in RNA-seq data compared to mm9 reference genome in wild type mice that were not edited or reduced in editing frequency in ADAR1E861A editing deficient mice. Secondly, to determine the transcriptional consequence of an absence of ADAR1-mediated A-to-I editing. Methods: Fetal liver mRNA profiles of embryonic day 12.5 wild-type (WT) and ADAR1 editing-deficient (ADAR1E861A) mice were generated by RNA sequencing, in triplicate (biological replicates), using Illumina HiSeq2000. The sequence reads that passed quality filters were analyzed at the transcript level with TopHat followed by Cufflinks. qRT–PCR validation was performed using SYBR Green assays. A-to-I (G) RNA editing sites were identified as previously described by Ramaswami G. et al., Nature Methods, 2012 using Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA). RNA editing sites were confirmed by Sanger sequencing. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 14,484 transcripts in the fetal livers of WT and ADAR1E861A mice with BWA. RNA-seq data had a goodness of fit (R2) of >0.94 between biological triplicates per genotype. Approximately 4.4% of the transcripts showed differential expression between the WT and ADAR1E861A fetal liver, with a LogFC=1.5 and p value <0.05. A profound upregulation of interferon stimulated genes were found to be massively upregulated (up to 11 logFC) in ADAR1E861A fetal liver compared to WT. 6,012 A-to-I RNA editing sites were identified when assessing mismatches in RNA-seq data of WT and ADAR1E861A fetal liver. Conclusions: Our study represents the first detailed analysis of fetal liver transcriptomes and A-to-I RNA editing sites, with biologic replicates, generated by RNA-seq technology. A-to-I RNA editing is the essential function of ADAR1 and is required to suppress interferon signaling to endogenous RNA. Overall design: Fetal liver mRNA profiles of E12.5 wild type (WT) and ADAR E861A mutant mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 200.

Publication Title

RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE78501
Gene expression profiling of genes differentially expressed by oral carcinoma Ca9-22 and SLPI-deficient Ca9-22 (SLPI) cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used the myoma model in conjunction with gene expression profiling with microarray data as an efficient tool for high throughput analysis and to screen for differentially expressed genes. Our aim was to identify candidates playing an important role in SLPI and/or MMP-promoted tumor invasion by comparing oral carcinoma Ca9-22 cells, which highly express secretory leukocyte protease inhibitor (SLPI) gene, with SLPI-deficient Ca9-22 cells.

Publication Title

Human uterus myoma and gene expression profiling: A novel in vitro model for studying secretory leukocyte protease inhibitor-mediated tumor invasion.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE67591
Whole genome expression microarray analysis in quadriceps of wild-type and NF90-NF45 double transgenic mouse
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

The complex of NF90 and NF45 is known to participate in transcriptional regulation, mRNA stabilization and microRNA biogenesis in vitro. However, the physiological function of the NF90-NF45 complex is still unclear. To elucidate its functions, we generated NF90-NF45 double transgenic (dbTg) mice. Robust expression of NF90 and NF45 was detected in skeletal muscle. As mentioned above, NF90-NF45 complex is involved in regulation of genes via transcription and RNA metabolism. To identify genes regulated by NF90-NF45, we performed comprehensive analyses of mRNA expression in quadriceps of wild-type (WT) and NF90-NF45 dbTg mice.

Publication Title

Overexpression of NF90-NF45 Represses Myogenic MicroRNA Biogenesis, Resulting in Development of Skeletal Muscle Atrophy and Centronuclear Muscle Fibers.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE22598
Clinical significance of UNC5B Expression in Colorectal Cancer
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose and Experimental Design: The purpose of this study is to find a methylation-related gene that could become a biomarker or therapeutic target in colorectal carcinoma (CRC). We screened candidate genes suspected to be silenced by DNA methylation using oligonucleotide microarray analysis. To investigate the clinical significance of one candidate gene (UNC5B), we analyzed the correlation between mRNA expression and clinicopathological features using clinical tissue samples. Finally, methylation specific PCR analysis was performed to reveal whether the promoter region was methylated in CRC cell lines. Results: We found 75 candidate genes that were potentially suppressed by DNA methylation in CRC. We focused on UNC5B, a possible tumor suppressor gene and regulator of apoptosis known to be inactivated in CRC. The mRNA expression analysis using tissue samples revealed that UNC5B mRNA was down-expressed in about 20% of CRC patients, and the patients with low-UNC5B-expression tumors showed a significantly higher recurrence rate after curative surgery. According to the univariate and multivariate analysis, low UNC5B expression was an independent risk factor for postoperative recurrence in stage I, II, and III CRC patients. Furthermore, patients with low expression of UNC5B in tumors had significantly poorer prognosis than those with high expression of UNC5B. Although UNC5B mRNA expression was restored by the demethylation treatment in CRC cell lines, the promoter region of UNC5B was not methylated. Conclusion: UNC5B is a potential biomarker for the selection of patients with high risk of postoperative recurrence and worse prognosis in CRC.

Publication Title

Clinical significance of UNC5B expression in colorectal cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE83589
Whole genome expression microarray analysis in hepatocellular carcinoma cell line, Huh7 cells, treated with siRNA targeting for nuclear factor 90 (siNF90)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

To identify genes regulated by complex of NF90 and nuclear factor 45 (NF45) in hepatocellular carcinoma, we performed comprehensive analyses of mRNA expression in Huh7 cells depleted of NF90.

Publication Title

Suppression of MicroRNA-7 (miR-7) Biogenesis by Nuclear Factor 90-Nuclear Factor 45 Complex (NF90-NF45) Controls Cell Proliferation in Hepatocellular Carcinoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE14663
Involvement of the rice LBD37 (OsLBD37) ortholog of Arabidopsis in nitrogen metabolism- and senescence-related processes
  • organism-icon Oryza sativa, Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact