refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon SRP108626
RNA-Sequencing of the Thyroid and Liver of Males Rats Exposed to Acrylamide
  • organism-icon Rattus norvegicus
  • sample-icon 169 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

We explored mechanisms of carcinogenicity of acrylamide in the rat thyroid. We compared the transcriptome profiles of target(thyroid) vs non-target(liver) tissues.

Publication Title

Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9118
A screen to identify novel tumor suppressor genes silenced by methylation in melanoma
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Malignant melanoma is a common and frequently lethal disease. Current therapeutic interventions have little effect on survival, emphasizing the need for a better understanding of the genetic, epigenetic, and phenotypic changes in melanoma formation and progression. We identified genes that were not previously known to be silenced by methylation in melanoma using a microarray-based screen following treatment of melanoma cell lines with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine.

Publication Title

Epigenetic silencing of novel tumor suppressors in malignant melanoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP125269
Analysis of gene expression in populations of adult undifferentiated spermatogonia [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

The undifferentiated spermatogonial population of mouse testis is known to be functionally heterogeneous and contain both stem cells and committed progenitor cells. However, gene expression patterns marking these distinct cell fractions are poorly defined. We found that a subset of undifferentiated spermatogonia were marked by expression of a PDX1-GFP transgene but properties of these cells were unclear. Undifferentiated cells were therefore isolated from adult testes and separated according to expression of PDX1-GFP+ for gene expression analysis by RNA-seq. Our goal was to identify differentially expressed genes from PDX1-GFP+ vs PDX1-GFP- with that of known markers of stem and committed progenitor cells. Overall design: 4 independent sets of PDX1-GFP-positive and PDX1-GFP-negative undifferentiated spermatogonia were isolated by flow sorting from adult mouse testes.

Publication Title

Identification of dynamic undifferentiated cell states within the male germline.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP126482
Identification of Glucocorticoid-Induced Leucine Zipper (Gilz) gene targets in undifferentiated spermatogonia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

Sustained spermatogenesis in adult males and recovery of fertility following germ cell depletion are dependent on undifferentiated spermatogonia with self-renewal potential. We have previously demonstrated a critical cell-autonomous role for Gilz in spermatogonial stem cell maintainance and spermatogenesis. To identify genes regulated by Gilz in the male germline, we have isolated undifferentiated spermatogonial cells from tamoxifen treated Gilzflox/flox (Control) and Gilzflox/flox UBC-CreER (TAM-KO) mice that will allow identification of genes mis-expressed upon loss of GILZ. Overall design: 4 independent sets of Gilzflox/flox (Control) and Gilzflox/flox UBC-CreER (TAM-KO) undifferentiated spermatogonia were isolated by flow sorting from adult mouse testes 7 days after treatment with tamoxifen.

Publication Title

GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE107215
Epigenetic Effects of Maternal Obesity on Wharton's Jelly (WJ) Mesenchymal Stromal Cells (MSCs): Implications For Cellular Therapy.
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Effects of maternal obesity on Wharton's Jelly mesenchymal stromal cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP120038
Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Sickle cell disease (SCD) results from a point mutation in the ß-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)–like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell–derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate ?-globin transcription and enhance HbF in tissue culture, murine and primate models. DMF recruited Nrf2 to the ?-globin promoters and the locus control region of the ß-globin locus in erythroleukemia cells, elevated HbF in SCD donor–derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased ?-globin mRNA in BM and HbF protein in red cells. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification Overall design: RNA-Seq of 30 samples

Publication Title

Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease.

Sample Metadata Fields

Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE8510
RAR-PLZF overcomes PLZF-mediated repression of CRABPI contributing to retinoid resistance in t(11;17) APL
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This study supports an active role for PLZF and RAR-PLZF in leukemogenesis, identifies upregulation of CRABPI as a novel mechanism contributing to retinoid resistance and reveals the ability of the reciprocal fusion gene products to mediate distinct

Publication Title

RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE70680
Effects of Lrf (encoded by Zbtb7a) deletion on gene expression in mouse embryonic fibroblast (MEF)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

LRF is reported as a transcription repressor, but its transcription target genes are not completely known

Publication Title

LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70559
Gene expression patterns associated with histopathology in toxic liver injury
  • organism-icon Rattus norvegicus
  • sample-icon 94 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

Predicting liver injury after exposure to toxic industrial chemicals is complicated by the large number of potential environmental contaminants, mixtures, and exposure dose and route scenarios. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be fibrogenic by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague-Dawley rats dosed with varying concentrations of three fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4-methylenedianiline) and two non-fibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. Transcriptomics data matched the predictions made using the DrugMatrix data with greater than 90% accuracy. Microarray data were verified using a 67-plex panel Bioplex assay, confirming that the 67-plex panel constituted a biomolecular signature of hepatic fibrosis (Figure). Necrosis and inflammatory infiltration were comorbid with fibrosis. Interaction analysis identified 24 genes specific for the fibrosis phenotype. The protein product of the gene most strongly correlated with the fibrosis phenotype (Pcolce) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (p<0.05). PCOLCE is a novel biomarker candidate of fibrotic injury. These results support the development of gene panels for liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology.

Publication Title

Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP126167
Revealing cellular and molecular transitions in neonatal germ cell differentiation using Single-cell RNA sequencing
  • organism-icon Mus musculus
  • sample-icon 140 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Neonatal germ cell development provides the foundation of spermatogenesis. However, a systematic understanding of this process is still limited. To resolve the cellular and molecular heterogeneity, we profiled single-cell transcriptomes of undifferentiated germ cells from neonatal mouse testes and employed unbiased clustering and pseudotime ordering analysis to assign cells to distinct cell states in the developmental continuum. We defined the unique transcriptional programs underlying the migratory capacity, resting cellular states and apoptosis regulation in transitional gonocytes. We also identified a subpopulation of primitive spermatogonia marked by CD87/uPAR, which exhibited a higher level of self-renewal gene expression and migration potential. We further revealed a differentiation-primed state within the undifferentiated compartment, in which elevated Oct4 expression correlates with lower expression of self-renewal pathway, higher Rarg expression, and enhanced retinoic acid responsiveness. Lastly, the knockdown experiment revealed the role of Oct4 in the regulation of gene expression related to the MAPK pathway and cell adhesion, which may contribute to stem cell differentiation. Our study thus provides novel insights into the cellular and molecular regulations during early germ cell development. Overall design: Here, we performed single-cell RNA-Seq of germ cells from mouse testes on postnatal day (PND) 5.5. We also obtained transcriptomes of subpopulations marked by different levels of CD87 or Oct4-GFP, as well as SSC culture after Oct4 knockdown by bulk RNA-Seq.

Publication Title

Revealing cellular and molecular transitions in neonatal germ cell differentiation using single cell RNA sequencing.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact