refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 76 results
Sort by

Filters

Technology

Platform

accession-icon GSE68159
Gene expression changes in a histone sprocket arginine mutant in histone H2A R78A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Examined gene expression changes in a histone H2A R78A mutant in Saccharomyces cerevisiae relative to wild-type cells. THe overall goal of this study was to determine the functions of histone 'sprocket' arginine residues, which insert into the DNA minor groove in the nucleosome. We examined the roles of sprocket arginine mutants in gene expression, histone incorporation, and DNA repair.

Publication Title

Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3621
R6/1 brain hemisphere time series gene expression
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

HD R6/1 transgenic mouse line brain hemispheres dissected. RNA targets were created for transgenics and wildtypes at time points 18, 22 and 27 weeks. Profiles and data analysis performed using the Bioconductor software and linear model contrasts using LIMMA on RMA probeset summarys.

Publication Title

Brain gene expression correlates with changes in behavior in the R6/1 mouse model of Huntington's disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE150771
Lacrimal gland myoepithelial cells are altered in a mouse model of dry eye disease
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The purpose of this study was to determine the pathogenic changes that occur in myoepithelial cells (MECs) from lacrimal glands of a mouse model of Sjogren’s syndrome. MECs were cultured from lacrimal glands of C57BL/6J (wild type, WT), and thrombospondin 1 knockout null (TSP1 -/- ) mice.

Publication Title

Lacrimal Gland Myoepithelial Cells Are Altered in a Mouse Model of Dry Eye Disease.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP091844
Expression changes following conditional deletion of SMARCA4 (Brg) in mouse embryonic stem cells [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We performed RNA-seq 72 h after acute deletion of Smarca4 in a line of conditional knockout mouse embryonic stem cells to examine altered gene expression. Overall design: Examination of mRNA in mouse embryonic stem cells expressing conditional knockout of the mSWI/SNF ATPase Smarca4. For these studies, mRNA was harvested from Smarca4-CreER (Smarca4flfl) conditional knockout cells 72 h after treatment with either ethanol (EtOH) or 0.8 uM 4-hydroxytamoxifen (Tam).

Publication Title

Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP106719
The deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B cell development [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/-Mb1-Cre+/- mice were virtually devoid of mature B cells, and B220+CD43+ B cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the immunoglobulin heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3D/- bone marrow. For Hdac3D/- B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment usage. While transcriptional effects within these loci were modest, Hdac3D/- progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Re-introduction of wild type Hdac3 restored normal B cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells. Overall design: Bone marrow was isolated from Hdac3+/+Mb1cre+/- or Hdac3F/-Mb1cre+/- mice at 8 weeks of age. B220+CD43+ B cells were isolated from marrow by FACS and cells from two mice were pooled per sample. Total RNA isolated by Trizol extraction.

Publication Title

Deacetylase activity of histone deacetylase 3 is required for productive <i>VDJ</i> recombination and B-cell development.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE17665
Methamphetamine preconditioning responses to methamphetamine-induced injury in the rat ventral midbrain
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge.

Publication Title

Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE6090
DC-SIGN initiates an immature dendritic cell phenotype triggering Rho activation that is utilised by HIV-1
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DC-SIGN is a C-type lectin expressed by dendritic cells (DCs) that binds HIV-1, sequestering it within multivesicular bodies to facilitate transmission to CD4+ T cells. Here we characterize the molecular basis of signalling through DC-SIGN by large-scale gene expression profiling and phosphoproteome analysis. Solitary DC-SIGN activation leads to a phenotypically disparate transcriptional program from Toll-like receptor (TLR) triggering with downregulation of MHC II, CD86, and interferon response genes and with induction of the TLR negative regulator ATF3. Phosphoproteome analysis reveals DC-SIGN signals through the leukemia-associated Rho guanine nucleotide exchange factor (LARG) to induce Rho activity. This LARG activation also occurs on DC HIV exposure and is required for effective HIV viral synapse formation. Taken together HIV mediated DC-SIGN signalling provides a mechanism by which HIV evades the immune response yet induces viral spread.

Publication Title

Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP155034
E14.5 pancreatic islet single-cell RNA-seq [wt]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

pancreas islet single-cell RNA-seq Overall design: isolated from 2 wt

Publication Title

Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP119064
Loss of Trem2 in microglia leads to widespread disruption of cell coexpression networks in mouse brain
  • organism-icon Mus musculus
  • sample-icon 483 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Rare heterozygous coding variants in the triggering receptor expressed in myeloid cells 2 (TREM2) gene, conferring increased risk of developing late-onset Alzheimer''s disease, have been identified. We examined the transcriptional consequences of the loss of Trem2 in mouse brain to better understand its role in disease using differential expression and coexpression network analysis of Trem2 knockout and wild-type mice. We generated RNA-Seq data from cortex and hippocampus sampled at 4 and 8 months. Using brain cell-type markers and ontology enrichment, we found subnetworks with cell type and/or functional identity. We primarily discovered changes in an endothelial gene-enriched subnetwork at 4 months, including a shift toward a more central role for the amyloid precursor protein gene, coupled with widespread disruption of other cell-type subnetworks, including a subnetwork with neuronal identity. We reveal an unexpected potential role of Trem2 in the homeostasis of endothelial cells that goes beyond its known functions as a microglial receptor and signaling hub, suggesting an underlying link between immune response and vascular disease in dementia. Methods: We performed differential expression and co-expression network analysis on a RNA-Seq profiled Trem2 knockout (KO) mouse using two brain areas sampled at 4- and 8-months to obtain a systems level view of the effects of the absence of Trem2. Results: The absence of Trem2 has a stronger effect at an earlier age with the number of differential expressed (DE) genes being 17-fold greater at 4 months than at 8 months in cortex. By integrating DE genes and network analysis, we discovered gene clusters associated with the disruption of blood vessel formation at 4 months of age and protein targeting primarily affecting the hippocampus at 8 months. Further integration of cell type and ontology information revealed a large disruption of a gene module enriched for endothelial cell markers coinciding with the module enriched for neuron cell markers having weaker connections to modules with oligodendrocyte and astrocyte identities. The module with neuronal identity has decreased expression only in the KO where it has closer association with a new module enriched for phagocytic functions. Conclusions: Combining gene co-expression and differential expression analysis on a newly generated RNA-Seq profiled Trem2 KO mouse demonstrate that the absence of Trem2 produces a disruption which mainly affects endothelialon related processes at 4 months of age. It results in a ripple effect that disrupts the cross-talk of other cell types at 8 months, including reduced expression of a gene module enriched in neuron related functions and a shift towards a more central role for App. This study reveals an unexpected role of Trem2 in the homeostasis of endothelial cells that goes beyond its known functions as a microglial receptor and signaling hub suggesting new paths for investigation at the intersection between Trem2, Alzheimer's disease and vascular dementia. Overall design: Hippocampus and cortex were selected because they represent tissues affected in AD at early and late stages, respectively (Matarin 2015, Mastrangelo 2008). Brain tissue samples were obtained from male Trem2 knockout (KO) and wild type (WT) control mice at two time points: 4 months and 8 months. These time points span the onset and late disease stages in well established AD mouse models (Matarin 2015). RNA-Seq was used to profile the transcriptomes for each sample. Two technical replicates were obtained for each sample.

Publication Title

Loss of Trem2 in microglia leads to widespread disruption of cell coexpression networks in mouse brain.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE15619
Epigenetic signature of breast cancer and its association with gene expression and copy number
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recent advances in multiple whole genome technologies provide unprecedented opportunities to profile epigenomic signatures in cancer cells. Previously we used a human gene promoter tiling microarray platform to identify genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. Interestingly, the clustered nature of epigenetic targets that we identified, along with our concurrent karyotype analyses, have now led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy) may be superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes.

Publication Title

Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact