refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 320 results
Sort by

Filters

Technology

Platform

accession-icon GSE8608
MDM from COPD patients and healthy subjects after treatment with LPS or fine and ultrafine particles
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study gene expression of monocyte-derived macrophages (MDM) from chronic obstructive pulmonary disease (COPD) patients and healthy subjects was investigated. MDM were treated with LPS, a combination of fine TiO2 and ultrafine Printex90 particles, or remained untreated.

Publication Title

Tissue-specific induction of ADAMTS2 in monocytes and macrophages by glucocorticoids.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44625
Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimers disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority.

Publication Title

Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE71850
Blast traumatic brain injury induced cognitive deficits are attenuated by pre- or post-injury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE71846
Blast traumatic brain injury induced cognitive deficits are attenuated by pre- or post-injury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4 [Day 3 dataset]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Blast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently there are no approved drugs for blast brain injury. Exendin-4, administered subcutaneously, was evaluated as a pre-treatment (48 hours) and post-injury treatment (2 hours) on neurodegeneration, behaviors and gene expressions in a murine open field model of blast injury. B-TBI induced neurodegeneration, changes in cognition and genes expressions linked to dementia disorders. Exendin-4, administered pre- or post-injury ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7-14 and attenuated genes regulated by blast at day 14 post-injury. The present data suggest shared pathological processes between concussive and B-TBI, with endpoints amenable to beneficial therapeutic manipulation by exendin-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiological studies of Barnes and co-workers who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life.

Publication Title

Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41345
Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Traumatic brain injury (TBI) is a global problem reaching near epidemic numbers that manifests clinically with cognitive problems that decades later may result in dementias like Alzheimers disease (AD). Presently, little can be done to prevent ensuing neurological dysfunctions by pharmacological means. Recently, it has become apparent that several CNS diseases share common terminal features of neuronal cell death. The effects of exendin-4 (Ex-4), a neuroprotective agent delivered via a subcutaneous micro-osmotic pump, were examined in the setting of mild TBI (mTBI). Utilizing a model of mTBI, where cognitive disturbances occur over time, animals were subjected to four treatments: sham; Ex-4; mTBI and Ex-4/mTBI. mTBI mice displayed deficits in novel object recognition, while Ex-4/mTBI mice performed similar to sham. Hippocampal gene expression, assessed by gene array methods, showed significant differences with little overlap in co-regulated genes between groups. Importantly, changes in gene expression induced by mTBI, including genes associated with AD were largely prevented by Ex-4. These data suggest a strong beneficial action of Ex-4 in managing secondary events induced by a traumatic brain injury.

Publication Title

Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE2394
Neuromuscular Junction
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

NMJ Junction various time points normal C57BL10 LCM mRNA

Publication Title

Intracellular expression profiling by laser capture microdissection: three novel components of the neuromuscular junction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE465
Expression profiling in the muscular dystrophies
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

This is a large series human Duchenne muscular dystrophy patient muscle biopsies, in specific age groups, using all available Affymetrix arrays (including a custom MuscleChip produced by the Hoffman lab). Both mixed groups of patients (5 patient biopsies per group) and individual biopsies were done.

Publication Title

Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46532
Stage-specific regulation of reprogramming to iPSCs by Wnt signaling and Tcf proteins
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Wnt signaling is intrinsic to mouse embryonic stem cell self-renewal. Therefore it is surprising that reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is not strongly enhanced by Wnt signaling. Here, we demonstrate that active Wnt signaling inhibits the early stage of reprogramming to iPSCs, while it is required and even stimulating during the late stage. Mechanistically, this biphasic effect of Wnt signaling is accompanied by a change in the requirement of all four of its transcriptional effectors: Tcf1, Lef1, Tcf3, and Tcf4. For example, Tcf3 and Tcf4 are stimulatory early but inhibitory late in the reprogramming process. Accordingly, ectopic expression of Tcf3 early in reprogramming combined with its loss-of-function late enables efficient reprogramming in the absence of ectopic Sox2. Together, our data indicate that the step-wise process of reprogramming to iPSCs is critically dependent on the stage-specific control and action of all four Tcfs and Wnt signaling.

Publication Title

Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE106532
Gene expression of human littoral cells and splenic vascular endothelial cells from the spleens of normal individuals and patients with myelofibrosis
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The vascular lining cells in the human spleens include littoral cells (LCs) and other splenic vascular endothelial cells (SVECs). LCs that comprise about 30 percent of the splenic red pulp are specialzed endothelial cells distinct from SVECs. They line the splenic sinusoids and function as the filters and scavengers for senescent or altered red blood cells. Patients with advanced forms of myelofibrosis (MF) often develope extramedullary hematopoiesis in the spleen.Vascular lining cells within MF spleens are thought to serve as a supportive microenvironment for MF hematopoietic cells. In this study we isolated MF and normal LCs and SVECs from human spleens using immunostaining and flow cytometric sorting and used microarrays to analyze the underling mechanism of LCs' unique functions that distinguish them from SVECs, and the properties of MF LCs and SVECs and their contributions to the microenvironment of MF spleens.

Publication Title

The characteristics of vessel lining cells in normal spleens and their role in the pathobiology of myelofibrosis.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE20030
Expression Data from BALB/c and Stat6-deficient bone marrow derived macrophages (BMDM)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to find Stat6 dependent genes in control and IL-4 exposed bone marrow derived macrophages.

Publication Title

Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact