refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 496 results
Sort by

Filters

Technology

Platform

accession-icon GSE37171
Expression data from uremic patients and 20 healthy controls (normals)
  • organism-icon Homo sapiens
  • sample-icon 115 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Renal failure is characterized by important biological changes resulting in profound pleomorphic physiological effects termed uremia, whose molecular causation is not well understood. The data was used to study gene expression changes in uremia using whole genome microarray analysis of peripheral blood from subjects with end-stage renal failure (n=63) and healthy controls (n=20) to obtain insight into the molecular and biological causation of this syndrome.

Publication Title

Alteration of human blood cell transcriptome in uremia.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Race

View Samples
accession-icon GSE87301
White Blood Cell Differentials Enrich Whole Blood Expression Data in the Context of Acute Cardiac Allograft Rejection
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute cardiac allograft rejection is a serious complication of heart transplantation. Investigating molecular processes in whole blood via microarrays is a promising avenue of research in transplantation, particularly due to the non-invasive nature of blood sampling. However, whole blood is a complex tissue and the consequent heterogeneity in composition amongst samples is ignored in traditional microarray analysis. This complicates the biological interpretation of microarray data. Here we have applied a statistical deconvolution approach, cell-specific significance analysis of microarrays (csSAM), to whole blood samples from subjects either undergoing acute heart allograft rejection (AR) or not (NR). We identified eight differentially expressed probe-sets significantly correlated to monocytes (mapping to 6 genes, all down-regulated in ARs versus NRs) at a false discovery rate (FDR) <= 15%. None of the genes identified are present in a biomarker panel of acute heart rejection previously published by our group and discovered in the same data.

Publication Title

White blood cell differentials enrich whole blood expression data in the context of acute cardiac allograft rejection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21901
Striatal microRNA controls cocaine intake through CREB signalling
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) regulate many basic aspects of cell biology including neuronal plasticity, but little is known of their roles in drug addiction. Extended access to cocaine can trigger the emergence of compulsive drug-seeking behaviors, but molecular mechanisms regulating this process remain unclear. Here we report that microRNA-212 (miR-212) is upregulated in the dorsal striatum of rats with extended access to cocaine. Striatal overexpression of miR-212 decreases, whereas its inhibition increases cocaine intake in rats with extended but not restricted drug access, suggesting that miR-212 serves as a protective factor against the development of compulsive drug seeking. The transcription factor CREB (cAMP response element-binding protein) is considered a core regulator of cocaine reward. We show that miR-212 controls responsiveness to cocaine by dramatically amplifying striatal CREB signaling. This action occurs through miR-212-enhanced Raf-1 activity, resulting in adenylyl cyclase sensitization and increased expression of the essential CREB co-activator TORC (Transducer of Regulated CREB; also known as CRTC). Our findings suggest that striatal miR-212 signaling plays a key role in vulnerability to addiction, and that noncoding RNAs such as the miRNAs may serve as novel targets for the development of anti-addiction therapeutics.

Publication Title

Striatal microRNA controls cocaine intake through CREB signalling.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE12507
Genome-wide expression analysis of a human pDC cell line
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of expression profiles of human pDC cell line (CAL1) compared to an immature T cell line (MOLT4)

Publication Title

Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12505
Plasmacytoid dendritic cells (pDCs) from E2-2 heterozygous mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.

Publication Title

Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP097744
A sister of NANOG regulates genes expressed in pre-implantation human development
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We examined the ability of human NANOGNB to regulate gene expression by ectopically expressing the gene in human dermal fibroblasts. Overall design: NANOGNB and an empty control vector were transfected individually to drive ectopic expression in human dermal fibroblasts, in triplicate.

Publication Title

A sister of <i>NANOG</i> regulates genes expressed in pre-implantation human development.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE23522
Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE23514
Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB (Exon array)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

To gain global insights into the role of the well-known repressive splicing regulator PTB we analyzed the consequences of PTB knockdown in HeLa cells using high-density oliogonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB repressed and activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons, but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTBactivated to a PTB-repressed exon. Our results demonstrate that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.

Publication Title

Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE71220
The effect of statins on blood gene expression in COPD
  • organism-icon Homo sapiens
  • sample-icon 529 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Background: COPD is currently the fourth leading cause of death worldwide and predicted to rank third by 2020. Statins are commonly used lipid lowering agents with documented benefits on cardiovascular morbidity and mortality, and have also been shown to have pleiotropic effects including anti-inflammatory and anti-oxidant activity. Objective: Identify a gene signature associated with statin use in the blood of COPD patients, and identify molecular mechanisms and pathways underpinning this signature that could explain any potential benefits in COPD. Methods: Whole blood gene expression was measured on 168 statin users and 452 non-users from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study. Gene expression was measured using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS) was used to process the expression data and to filter out non-informative probe sets. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma) package adjusting for propensity score and employing a surrogate variable analysis. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser. Results: 18 genes were differentially expressed between statin users and non-users at a false discovery rate of 10%. Top genes included LDLR, ABCA1, ABCG1, MYLIP, SC4MOL, and DHCR24. The 18 genes were significantly enriched in pathways and biological processes related to cholesterol homeostasis and metabolism, and were enriched for transcription factor binding sites for sterol regulatory element binding protein 2 (SREBP-2). The resulting gene signature showed correlation with Huntington disease, Parkinsons disease and acute myeloid leukemia. Conclusion: Statins gene signature was not enriched in any pathways related to respiratory diseases, beyond the drugs effect on cholesterol homeostasis.

Publication Title

The Effect of Statins on Blood Gene Expression in COPD.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE8349
Microarray platform comparison study of hippocampal gene expression in DCLK1 transgenic and wild-type mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of the present study was to compare, on a statistical basis, the performance of different microarray platforms to detect differences in gene expression in a realistic and challenging biological setting. Gene expression profiles in the hippocampus of five wild-type and five transgenic C-doublecortin-like kinase mice were evaluated with five microarray platforms: Applied Biosystems, Affymetrix, Agilent, Illumina and home-spotted oligonucleotide arrays. We observed considerable overlap between the different platforms, the overlap being better detectable with significance level-based ranking than with a p-value based cut-off. Confirming the qualitative agreement between platforms, Pathway analysis consistently demonstrated aberrances in GABA-ergic signalling in the transgenic mice, even though pathways were represented by only partially overlapping genes on the different platforms.

Publication Title

Can subtle changes in gene expression be consistently detected with different microarray platforms?

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact