refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 424 results
Sort by

Filters

Technology

Platform

accession-icon GSE13603
Dorsal Ventral Pancreatic Bud Comparison
  • organism-icon Xenopus laevis
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

During embryogenesis, the pancreas develops from separate dorsal and ventral buds, which fuse to form the mature pancreas. Little is known about the functional differences between these two buds or the relative contribution of cells derived from each portion to the pancreas after fusion. To follow the fate of dorsal or ventral bud derived cells in the pancreas after fusion, we produced chimeric Elas-GFP transgenic/wild type embryos in which either dorsal or ventral pancreatic bud cells expressed GFP. We found that ventral pancreatic cells migrate extensively into the dorsal pancreas after fusion, whereas the converse does not occur. Moreover, we found that annular pancreatic tissue is composed exclusively of ventral pancreas derived cells. To identify ventral pancreas specific genes that may play a role in pancreatic bud fusion, we isolated individual dorsal and ventral pancreatic buds, prior to fusion, from stage 38/39 Xenopus laevis tadpoles and compared their gene expression profiles. Morpholino-mediated knockdown of one of these ventral specific genes, transmembrane 4 superfamily member 3 (tm4sf3), inhibited dorsal-ventral pancreatic bud fusion as well as acinar cell differentiation. Conversely, overexpression of tm4sf3 promoted the development of annular pancreas. Our results are the first to define molecular and behavioral differences between the dorsal and ventral pancreas, and suggest an unexpected role for the ventral pancreas in pancreatic bud fusion.

Publication Title

The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29017
Expression data from Xenopus endoderm at stage 15 following four hours of Ngn3-GR overexpression
  • organism-icon Xenopus laevis
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Ngn3 is a master regulator of pancreatic endocrine development. It is necessary for the creation of all endocrine cells in mice. Little is known about the genes that act downstream of the transcription factor Ngn3 in pancreas endocrine development to specify each of the endocrine lineages. As a consequence, little is known about the genes involved in early development and the specification of the beta cell. We used microarrays to identify Ngn3 downstream genes that are involved in early and ectopic beta cell development in Xenopus laevis. We overexpressed Ngn3 in the Xenopus early endoderm and analyzed the genes that are upregulated four hours after.

Publication Title

Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE23642
Expression data from Xenopus anterior gut RFX6 knockdown
  • organism-icon Xenopus laevis
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Recently a new neonatal diabetes syndrome, Mitchell-Riley syndrome, was discovered. To identify the genetic cause of the syndrome homozygosity mapping was used, several chromosomal regions were linked to Mitchell-Riley syndrome. In situ hybridization of genes from one such region using model organism Xenopus laevis identified RFX6 as a potential candidate gene; mutant forms of RFX6 were subsequently found in Mitchell-Riley patients. Analysis of the expression pattern of RFX6 in Xenopus development shows it is expressed broadly in the endoderm early in development, and later RFX6 becomes restricted to the endocrine cells of the gut and pancreas. Morpholino knockdown of RFX6 in Xenopus caused a loss of pancreas marker gene expression. Injection of exogenous wild type RFX6 rescued the morpholino phenotype in Xenopus tadpoles. Attempts to rescue the loss-of-function phenotype using mutant forms of RFX6 found in Mitchell-Riley patients were unsuccessful suggesting the changes lead to loss-of-function and could be the cause of Mitchell-Riley syndrome. Microarray analysis of gene expression in knockdown tissue suggested a downregulation in marker genes for lung, stomach and heart, ambiguous results for the liver, and an upregulation in kidney marker gene expression. RT-PCR and in situ hybridization confirms a loss of lung, stomach and heart gene expression, no change in liver marker hex and an upregulation in kidney marker KcnJ1. The fact that the morpholino phenotype affects multiple organs suggests that RFX6 has a broad role early in endoderm development.

Publication Title

Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon E-TABM-89
Transcription profiling by array of mouse embryonic stem cells after treatment with cisplatin
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

To gain insight in the kinetics and interplay of the predominant transcriptional responses of DNA damage signalling pathways in undifferentiated cells, mouse embryonic stem cells were exposed to cisplatin at four different time points (2, 4, 8 and 24 hr) and concentrations (1, 2, 5 and 10 uM). RNA was isolated and subjected to genome-wide expression profiling.

Publication Title

A portrait of cisplatin-induced transcriptional changes in mouse embryonic stem cells reveals a dominant p53-like response.

Sample Metadata Fields

Specimen part, Compound, Time

View Samples
accession-icon GSE67351
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE27569
Expression data from zebrafish depleted of Esco2
  • organism-icon Danio rerio
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Our study in zebrafish is the first to use an animal model to understand the biology of the developmental disorder Roberts Syndrome (RBS). RBS is caused by mutations in the ESCO2 gene.

Publication Title

A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE10070
Gene Expression in MCF10A cells through Differentiation on Transwells
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To further understand the differences occurring in MCF10A cells as they polarize and differentiate in the Transwell model, we performed gene expression profiling with Affymetrix Human Genome U133 Plus 2.0 Arrays. Four experimental time points, were sampled: conventional cultures of MCF10A cells grown on plastic (Monolayer) and MCF10A cells plated on Transwells sampled at three TEER values, 200-300 cm2 (Base), 1400-1600 cm2 (Midpoint), and 3000-3200 cm2 (Plateau).

Publication Title

In vitro multipotent differentiation and barrier function of a human mammary epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39186
Effect of TET1 and TET3 overexpression on the transcriptome of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29814
Molecular profiling of stomatal lineage cell states
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We initiated a study to investigate the transcriptional profiles associated with cell states of the stomatal lineage. A stem-cell like precursor of stomata, a meristemoid. reiterates asymmetric divisions and renews itself before differentiating into guard cells. The transient and asynchronous nature of the meristemoid has made it difficult to study its molecular characteristics. Through combinatorial use of genetic resources that either arrest or constitutively drive stomatal cell-state progressions due to loss- or gain-of-function mutations in the key transcription factor genes, SPEECHLESS, MUTE, and SCRM, we obtained seedlings highly enriched in pavement cells, meristemoids, or stomata. Here we present transcriptome and genome-wide trends in gene regulation associated with each cell state and identify molecular signatures associated with meristemoids.

Publication Title

Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP074244
Dietary intake influences fertility and offspring development in zebrafish.
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report that increased nutrient availability increases breeding success and egg production. RNA-seq analysis revealed that parental diet altered the expression of metabolic genes in the unfertilized eggs. Offspring from the differentially fed parents showed altered survival and energy expenditure as adults. Overall design: RNA from unfertilized eggs after two parental diets.

Publication Title

Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact