refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 184 results
Sort by

Filters

Technology

Platform

accession-icon GSE32614
Effects of Aging and Anatomic Location on Gene Expression in Human Retina
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Objective: To determine the effects of age and topographic location on gene expression in human neural retina.

Publication Title

Effects of aging and anatomic location on gene expression in human retina.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE89731
Octopamine Enhances Oxidative Stress Resistance Through the Fasting-Responsive Transcription Factor DAF-16/FOXO in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Dietary restriction regimens lead to enhanced stress resistance and extended lifespan in many species through the regulation of fasting and/or diet responsive mechanisms. The fasting stimulus is perceived by sensory neurons and causes behavioral and metabolic adaptations. Several studies have implicated that the nervous system is involved in the regulation of longevity. However, it remains largely unknown whether the nervous system contributes to the regulation of lifespan and/or stress resistance elicited by fasting. In this study, we first investigated the role of the nervous system in fasting-elicited longevity and stress resistance. We found that lifespan extension in Caenorhabditis elegans caused by an intermittent fasting (IF) regimen was suppressed by functional defects in sensory neurons. The IF-induced longevity was also suppressed in a mutant that lacks the enzyme required for the synthesis of an amine neurotransmitter, octopamine (OA), which acts in the absence of food, i.e., under fasting conditions. Although OA administration did not significantly extend the lifespan, it enhanced organismal resistance to oxidative stress. This enhanced resistance was suppressed by a mutation of the OA receptors, SER-3 and SER-6. Moreover, we found that OA administration promoted the nuclear translocation of DAF-16, the key transcription factor in fasting responses, and that the OA-induced enhancement of stress resistance required DAF-16. Altogether, our results suggest that OA signaling, which is triggered by the absence of food, shifts the organismal state to a more protective one to prepare for environmental stresses.

Publication Title

Octopamine enhances oxidative stress resistance through the fasting-responsive transcription factor DAF-16/FOXO in C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP032811
Consequences of beta-PDGFR deletion on hepatic stellate cells during hepatic regeneration
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study was to determine biological consequences during liver regeneration following partial hepatectomy in mice by next-generation sequencing. A particular interest was to compare mice with either a floxed b-PDGFR allele to mice that harbored a deletion of b-PDGFR in hepatic stellate cells (HSCs), by crossing b-PDGFR fl/fl mice with transgenic GFAP-Cre mice. Methods: b-PDGFR fl/fl mice or mice with a HSC-specific deletion of b-PDGFR underwent either sham operation or 70% partial hepatectomy. Following 72 hours, livers were collected and total RNA was extracted using tizol, followed by a purification using Quiagen spin columns including an on-column DNAse digestion step. Conclusion: Our study represents a detailed analysis of hepatic transcriptome, with biologic replicates, generated by RNA-seq technology of livers following sham operation or partial hepatectomy in b-PDGFR fl/fl mice or b-PDGFRfl/fl/GRAP-Cre mice. Overall design: Whole liver mRNA profiles of sham operated livers or livers collected 72hours after partial hepatectomy of beta-PDGFR fl/fl and beta-PDGFR fl/fl/GFAP-Cre (creating a hepatic stellate cell-specific deletion of b-PDGFR) mice were generated by deep sequencing, in duplicate, using Illumina HiSeq2000.

Publication Title

Induction and contribution of beta platelet-derived growth factor signalling by hepatic stellate cells to liver regeneration after partial hepatectomy in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53937
Identification of genes involved in cell death induced by sodium fluoride in rat oral epithelial cells
  • organism-icon Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Although an appropriate range of fluoride is thought to be safe and effective, excessive fluoride intake results in toxic effects in either hard tissues of teeth and skeleton or soft tissues of kidney, lung and brain. It is also well known that fluoride at a millimolar range elicits the complex cellular responses such as enzyme activity, signal transduction and apoptosis in many kinds of cells. However, its toxic effects are still unclear.

Publication Title

Genes and gene networks involved in sodium fluoride-elicited cell death accompanying endoplasmic reticulum stress in oral epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE63941
Expression data from cultured human esophageal squamous cell carcinoma cell lines and cultured human fibroblasts.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cancer cells express different sets of receptor type tyrosine kinases. These receptor kinases may be activated through autocrine or paracrine mechanisms. Fibroblasts may modify the biologic properties of surrounding cancer cells through paracrine mechansms.

Publication Title

The role of HGF/MET and FGF/FGFR in fibroblast-derived growth stimulation and lapatinib-resistance of esophageal squamous cell carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE55339
Gene expression profiles of uhrf1 mutant zebrafish
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

UHRF1 (Ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication, is essential for maintaining DNA methylation patterns during cell division and is suggested to direct additional repressive epigenetic marks. Uhrf1 mutation in zebrafish results in multiple embryonic defects including failed hepatic outgrowth, but the epigenetic basis of these phenotypes is not known. We find that DNA methylation is the only epigenetic mark that is depleted in uhrf1 mutants and make the surprising finding that despite the reduced organ size in uhrf1 mutants, genes regulating DNA replication and S-phase progression were highly upregulated. Further, there is a striking increase in BrdU incorporation in uhrf1 mutant cells, and they retained BrdU labeling over several days, indicating they are arrested in S-phase. Moreover, some of the label retaining nuclei co-localized with TUNEL positive nuclei, suggesting that arrested cells are responsible for apoptosis. Importantly, dnmt1 mutation phenocopies the S-phase arrest and hepatic outgrowth defects in uhrf1 mutants and Dnmt1 knock-down enhances the uhrf1 hepatic phenotype. Together, these data indicate that DNA hypomethylation is sufficient to generate the uhrf1 mutant phenotype by promoting an S-phase arrest. We thus propose that cell cycle arrest is a mechanism to restrict propagation of epigenetically deranged cells during embryogenesis.

Publication Title

DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26146
Expression data from cultured human lung tissue-derived fibroblasts and human vascular adventitial fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to find the difference between human lung tissue-derived fibroblasts and human vascular adventitial fibroblasts for enhancing tumor formation ablity of human lung adenocarcinoma cell line A549, we found that human vascular adventitial fibroblasts enhance A549 tumor formation in vivo compared to human lung tissue-derived fibroblasts. To find the responsible genes for this phenomena, we used microarray analysis to find the expression difference between lung tissue-derived fibroblasts and vascular adventitial fibroblas

Publication Title

Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8401
Gene Signature for Aggression of Melanoma Metastases - Melanoma Metastasis
  • organism-icon Homo sapiens
  • sample-icon 82 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Metastasis is the deadliest phase of cancer progression. Experimental models using immunodeficient mice have been used to gain insights into the mechanisms of metastasis. We report here the identification of a metastasis aggressiveness gene expression signature derived using human melanoma cells selected based on their metastatic potentials in a xenotransplant metastasis model. Comparison with expression data from human melanoma patients shows that this metastasis gene signature correlates with the aggressiveness of melanoma metastases in human patients. Many genes encoding secreted and membrane proteins are included in the signature, suggesting the importance of tumor-microenvironment interactions during metastasis.

Publication Title

Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE95716
Glutamine supplementation suppresses herpes simplex virus reactivation
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Glutamine supplementation suppresses herpes simplex virus reactivation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7956
Gene Signature for Aggression of Melanoma Metastases - Melanoma Metastasis (LeiFidler)
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Metastasis is the deadliest phase of cancer progression. Experimental models using immunodeficient mice have been used to gain insights into the mechanisms of metastasis. We report here the identification of a metastasis aggressiveness gene expression signature derived using human melanoma cells selected based on their metastatic potentials in a xenotransplant metastasis model. Comparison with expression data from human melanoma patients shows that this metastasis gene signature correlates with the aggressiveness of melanoma metastases in human patients. Many genes encoding secreted and membrane proteins are included in the signature, suggesting the importance of tumor-microenvironment interactions during metastasis.

Publication Title

Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact