refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 184 results
Sort by

Filters

Technology

Platform

accession-icon GSE102549
Genome-wide identification of Grainy head targets in Drosophila [gene expression]
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Grainy head (Grh) is a conserved transcription factor (TF) controlling epithelial differentiation and regeneration. To elucidate Grh functions, we identified embryonic Grh targets by ChIP-seq and gene expression analysis. We show that Grh controls hundreds of target genes. Repression or activation correlates with the distance of Grh binding sites to the transcription start sites of its targets. Analysis of 54 Grh-responsive enhancers during development and upon wounding suggests cooperation with distinct TFs in different contexts. In the airways, Grh repressed genes encode key TFs involved in branching and cell differentiation. Reduction of the POU-domain TF, Vvl, (ventral veins lacking) largely ameliorates the airway morphogenesis defects of grh mutants. Vvl and Grh proteins additionally interact with each other and regulate a set of common enhancers during epithelial morphogenesis. We conclude that Grh and Vvl participate in a regulatory network controlling epithelial maturation.

Publication Title

Genome-wide identification of Grainy head targets in <i>Drosophila</i> reveals regulatory interactions with the POU domain transcription factor Vvl.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE102551
Genome-wide identification of Grainy head targets in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide identification of Grainy head targets in <i>Drosophila</i> reveals regulatory interactions with the POU domain transcription factor Vvl.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10444
gene expression levels in long-term cultures of human dental pulp stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In previous studies, human dental pulp stem cells (hDPSCs) were mainly isolated from adults. In this manuscript, we tried characterization of hDPSCs isolated from an earlier developmental stage to evaluate potential usage of these cells for tissue regenerative therapy. hDPSCs isolated at the crown-completed stage showed a higher proliferation rate than those isolated at the later stage. When the cells from either group were cultured in medium promoting differentiation towards cells of the osteo/odontoblastic lineage, both became alkaline phosphatase positive, produced calcified matrix, and were also capable of forming dentin-like matrix on scaffolds in vivo. However, during long-term passage, these cells underwent a change in morphology and lost their differentiation ability. The results of a DNA array experiment showed that the expression of a number of genes, such as WNT16, was markedly changed with increasing number of passages, which might have caused the loss of their characteristics as hDPSCs.

Publication Title

Characterization of dental pulp stem cells of human tooth germs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP155027
RNA-seq of PC9 cells tolerant to gefitinib
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

EGFR inhibitors (EGFRi) are effective against EGFR mutant lung cancers. The efficacy of these drugs however is mitigated by the outgrowth of resistant cells, most often driven by a secondary acquired mutation in EGFR, T790M. We recently demonstrated that T790M can arise de novo during treatment (Hata et al., Nature Medicine 2016); it follows that one potential therapeutic strategy to thwart resistance would be identifying and eliminating these cells (referred to as drug tolerant cells (DTCs)) prior to acquiring secondary mutations like T790M. We have developed DTCs to EGFRi in EGFR mutant lung cancer cell lines. Subsequent analyses of DTCs included RNA-seq, high-content microscopy, and protein translational assays. Based on these results, we tested the ability of MCL-1 BH3 mimetics to combine with EGFR inhibitors to eliminate DTCs and shrink EGFR mutant lung cancer tumors in vivo. Overall design: The NSCLC cell line PC9 was made tolerant to gefitinib over 6-days. Replicates were performed at a minimum of duplicates. EGFR inhibitors (EGFRi) are effective against EGFR mutant lung cancers. The efficacy of these drugs however is mitigated by the outgrowth of resistant cells, most often driven by a secondary acquired mutation in EGFR, T790M. We recently demonstrated that T790M can arise de novo during treatment (Hata et al., Nature Medicine 2016); it follows that one potential therapeutic strategy to thwart resistance would be identifying and eliminating these cells (referred to as drug tolerant cells (DTCs)) prior to acquiring secondary mutations like T790M. We have developed DTCs to EGFRi in EGFR mutant lung cancer cell lines. Subsequent analyses of DTCs included RNA-seq, high-content microscopy, and protein translational assays. Based on these results, we tested the ability of MCL-1 BH3 mimetics to combine with EGFR inhibitors to eliminate DTCs and shrink EGFR mutant lung cancer tumors in vivo.

Publication Title

Increased Synthesis of MCL-1 Protein Underlies Initial Survival of <i>EGFR</i>-Mutant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug Target.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE63941
Expression data from cultured human esophageal squamous cell carcinoma cell lines and cultured human fibroblasts.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cancer cells express different sets of receptor type tyrosine kinases. These receptor kinases may be activated through autocrine or paracrine mechanisms. Fibroblasts may modify the biologic properties of surrounding cancer cells through paracrine mechansms.

Publication Title

The role of HGF/MET and FGF/FGFR in fibroblast-derived growth stimulation and lapatinib-resistance of esophageal squamous cell carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56026
Gene expression in human endometrial cancer tissues and serous papillary endometrial cancer cell line, SPAC-1L, treated by STAT1-siRNA and/or IFN-gamma
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Endometrial cancer is one of the most common gynecologic malignancies, and patients with high grade disease, especially serous papillary subtype (SPEC) are often related to the poor outcomes. Recent genome-wide analyses have revealed that SPEC exhibits gene expression profiles that are distinct from the endometrioid histologic subtype; therefore, it is important to identify the SPEC driver genes or pathways responsible for the inherently aggressive phenotypes and to develop SPEC-specific therapies to target these driver genes or pathways.

Publication Title

STAT1 drives tumor progression in serous papillary endometrial cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP186367
Loss of RNA-binding protein Sfpq causes long-gene transcriptopathy in skeletal muscle and severe muscle mass reduction with metabolic myopathy (skeletal muscle, mRNA-seq)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed polyA-tailed RNA profiles including transcribing RNAs in gastrocnemius skeletal muscle ( from 3 control and 3 Sfpq-/- P35 male mice) using Ion-proton.

Publication Title

Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP124852
Loss of RNA-binding protein Sfpq causes long-gene transcriptopathy in skeletal muscle and severe muscle mass reduction with metabolic myopathy (Primary culture, rRNA depleted RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed rRNA-depleted RNA profiles including transcribing RNAs in primary myoblasts obtained from skeletal muscles of 1-month-old SfpqSM-KO (n=1) and control (n=1) mice under differentiated condition using Ion-proton.

Publication Title

Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP058842
PGC reversion to pluripotency involves erasure of DNA methylation from imprinting control centers followed by locus-specific re-methylation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Primordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However when removed from their embryonic niche PGCs undergo reversion to generate pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) involves variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. In the current study we show that reverting PGCs to EGCs involves ICC methylation erasure, which remain stably hypomethylated at Snrpn, Igf2r and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes almost complete de novo remethylation. Using the same approach for PGCs differentiated in vitro from ESCs we show that the Snrpn ICC is erased however the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC is abnormally hypermethylated in ESCs, ICC methylation is not erased with differentiation into PGCs. This highlights the importance of not only launching germline differentiation with correctly methylated ESC lines but also the need to better stabilize the hypomethylated state in the in vitro derivatives following ICC erasure. Overall design: RNA seq of E9.5 PGCs, iPGCs, PGCLCs and EGCs using small cell numbers from start. N=2 biological replicates in 2 technical sequencing replicates.

Publication Title

PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE150464
Role of PDK1 in Skeletal Muscle Hypertrophy Induced by Exercise Load
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Skeletal muscle mass is an important determinant of whole-body glucose disposal. We here show that mice (M-PDK1KO mice) with skeletal muscle–specific deficiency of 3'-phosphoinositide–dependent kinase 1 (PDK1), a key component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of exercise load–induced muscle hypertrophy.

Publication Title

Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact