refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 83 results
Sort by

Filters

Technology

Platform

accession-icon GSE70271
caArray_jacks-00113: Murine KRASLA lung cancer gene expression
  • organism-icon Mus musculus
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Tumors from 5-6 month old KrasLA mice were dissected. Gene expression analysis on U74A affy chips. 19 normal lungs from age matched controls were also includeed

Publication Title

Comparison of gene expression and DNA copy number changes in a murine model of lung cancer.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon SRP066863
Core pathway mutations induce de-differentiation of murine astrocytes into glioblastoma stem cells that are sensitive to radiation, but resistant to temozolomide (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Introduction: Glioma stem cells isolated from human glioblastomas are resistant to radiation and cytotoxic chemotherapy and may drive tumor recurrence. Treatment efficacy may depend on the presence of glioma stem cells, expression of DNA repair enzymes such as methylguanine methyltransferase (MGMT), or transcriptome subtype. Methods: To model genetic alterations in the core signaling pathways of human glioblastoma, we induced conditional Rb knockout, Kras activation, and Pten deletion mutations in cortical murine astrocytes. Serial neurosphere culture, multi-lineage differentiation, and orthotopic transplantation were used to assess whether these mutations induced de-differentiation of cortical astrocytes into glioma stem cells. Efficacy of radiation and temozolomide was examined in vitro and in an allograft model in vivo. The effects of radiation on transcriptome subtype was examined by expression profiling. Results: G1/S-defective, Rb knockout astrocytes gained unlimited self-renewal and multi-lineage differentiation capacity, in both the presence and absence of Kras and Pten mutations. Only triple mutant astrocytes formed serially-transplantable glioblastoma allografts. Triple mutant astrocytes and allografts were sensitive to radiation, but expressed Mgmt and were resistant to temozolomide. Radiation induced a shift in transcriptome subtype of glioblastoma allografts from proneural to mesenchymal. Conclusion: A defined set of core signaling pathway mutations induces de-differentiation of cortical murine astrocytes into glioma stem cells. This non-germline genetically engineered mouse model mimics human proneural glioblastoma on histopathological, molecular, and treatment response levels. It may be useful in dissecting the genetic and cellular mechanisms of treatment resistance and developing more effective therapies. Overall design: Investigation of chromatin accessibility in astrocytes and glioblastoma cell lines

Publication Title

Core pathway mutations induce de-differentiation of murine astrocytes into glioblastoma stem cells that are sensitive to radiation but resistant to temozolomide.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP144188
RNA Sequencing of Human iPS derived Cardiomyocytes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To investigate transcriptional differences between HCM and WT cells Overall design: Examination of HCM vs WT Cells, with 3 replicates of each sample

Publication Title

A Contraction Stress Model of Hypertrophic Cardiomyopathy due to Sarcomere Mutations.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon E-MEXP-1454
Transcription profiling of A.thaliana to determine the ffect of aneuplody extra copy of chromosome 5
  • organism-icon Arabidopsis thaliana
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Effects of aneuploidy on gene expression in Arabidopsis thaliana containing extra copies of chromosome 5.

Publication Title

Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE8818
Expression changes in intestinal crypts upon deletion of beta-catenin
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF-family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture micro dissection confirmed those observations and allowed to identify genes potentially responsible for the functional preservation of intestinal stem cells.

Publication Title

Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-879
Transcription profiling of Drosophila embryos at stages 11 and 12 to identify genes downstream of Hox
  • organism-icon Drosophila melanogaster
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Identification of Hox gene downstream genes at embryonic stages 11 and 12<br></br><br></br>Functional diversification of body parts is dependent on the formation of specialized structures along the various body axes. In animals, region-specific morphogenesis along the anterior-posterior axis is controlled by a group of conserved transcription factors encoded by the Hox genes. Although it has long been assumed that Hox proteins carry out their function by regulating distinct sets of downstream genes, only a small number of such genes have been found, with very few having direct roles in controlling cellular behavior. We have quantitatively identified hundreds of Hox downstream genes in Drosophila by microarray analysis, and validated many of them by in situ hybridizations on loss- and gain-of-function mutants. One important finding is that Hox proteins, despite their similar DNA binding properties in vitro, have highly specific effects on the transcriptome in vivo, as expression of many downstream genes responds primarily to a single Hox protein. In addition, a large fraction of downstream genes encodes realizator functions, which directly affect morphogenetic processes, such as orientation and rate of cell divisions, cell-cell adhesion and communication, cell shape and migration, or cell death. Focusing on these realizators, we provide a framework for the morphogenesis of the maxillary segment. Since the genomic organization of Hox genes and the interaction of Hox proteins with specific cofactors are conserved in vertebrates and invertebrates, and similar classes of downstream genes are regulated by Hox proteins across the metazoan phylogeny, our findings represent a first step towards a mechanistic understanding of morphological diversification within a species as well as between species.

Publication Title

Comparative analysis of Hox downstream genes in Drosophila.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE65851
Beta Amyloid toxicity in a Caenorhabditis elegans model of Alzheimer's disease
  • organism-icon Caenorhabditis elegans
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Transgenic animals were engineered to express human amyloid peptide controlled by a muscle-specific, heat-inducible promoter. At low temperatures (16C) Abeta expression is minimal, while at higher temperatures (20-25C) Abeta accummulates in large quantities and causes paralysis.

Publication Title

Identifying Aβ-specific pathogenic mechanisms using a nematode model of Alzheimer's disease.

Sample Metadata Fields

Time

View Samples
accession-icon GSE61484
Gamma radiation and HZE treatment of seedlings in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as collateral damage to other cellular components and therefore are not expected to provoke identical responses by the cell.

Publication Title

High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE74862
HOXA5 counteracts stem cell traits by inhibiting Wnt signaling
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Here we identify HOXA5 as an important repressor of intestinal stem cell fate in vivo and identify a reciprocal feedback between HOXA5 and Wnt signaling. HOXA5 is suppressed by the Wnt pathway to maintain stemness and becomes active only outside the intestinal crypt where it inhibits Wnt signaling to enforce differentiation. In colon cancer, HOXA5 is down-regulated and its re-expression induces loss of the cancer stem cell phenotype preventing tumor progression and metastasis. Tumor regression by HOXA5 induction can be triggered by retinoids, which represents a tangible means to treat colon cancer by eliminating cancer stem cells.

Publication Title

HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP111520
The effect of genetic background on cognitive and pathological traits: AD-BXD
  • organism-icon Mus musculus
  • sample-icon 108 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Female C57BL/6J mice hemizygous for the 5XFAD transgene (MMRRC Stock No #34848-JAX) were bred to males from BXD strains, which do not carry the 5XFAD transgene. The resulting F1 progeny were monitored throughout their lifespan to evaluate the effect of genetic background on cognitive and pathological traits. All of the mice were fear conditioned and sacrificed within 30 minutes of testing. On the sample records, the characteristics: age field provides the age at which fear conditioning, sacrifice, and tissue collection occurred. Samples here come from various AD-BXD lines and their non-transgenic (Ntg) littermate counterparts at either 6 or 14 months of age. Overall design: 133 samples, 64 Ntg and 69 AD. For final by-strain analysis, samples were averaged into strain/age/genotype/sex groups (For example, all D2 6mo 5XFAD males were averaged for final by-strain analysis)

Publication Title

Harnessing Genetic Complexity to Enhance Translatability of Alzheimer's Disease Mouse Models: A Path toward Precision Medicine.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact