refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 164 results
Sort by

Filters

Technology

Platform

accession-icon GSE99775
MYD88 L265P differential expression analysis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The wider transcriptional effects of MYD88L265P were explored by analysing the microarray datasets using the limma package. We focussed on evidence for differential expression between Myd88L265P and Card11L232LI transduced B cells because both cell populations were actively proliferating at the time of RNA isolation.

Publication Title

Synergistic cooperation and crosstalk between <i>MYD88<sup>L265P</sup></i> and mutations that dysregulate CD79B and surface IgM.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17987
Novel treatment of human pancreatic cancer using masitinib combined with standard gemcitabine chemotherapy
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Masitinib is a tyrosine kinase inhibitor of c-Kit, PDGFR and , and to some extent Lyn of the Src kinase family. We evaluated the therapeutic potential of masitinib in vitro on human pancreatic tumour cell lines and in vivo in a mouse model of human pancreatic cancer.

Publication Title

Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE80410
Characterization of tumor-associated-macrophage of breast cancer patient-derived xenografts
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

The aim of this study was to characterize the stroma displayed by different models of breast cancer tumors in mice. For this purpose, transcriptomic and flow cytometry analyses on murine populations were performed in a series of 25 PDXs and 2 most commonly used GEMs (MMTV-PyMT and MMTV-erBb2). Specifically, macrophages from 5 models were sorted and profiled by gene expression and phenotypically characterized by flow cytometry.

Publication Title

Characterization of Breast Cancer Preclinical Models Reveals a Specific Pattern of Macrophage Polarization.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE73764
Transcriptomic effects of TNFa in primary fibroblast-like synovial cell cultures
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiles in synovial biopsies from patients with rheumatoid arthritis (RA) display a high level of plasticity related to disease activity and response to therapy.

Publication Title

Higher expression of TNFα-induced genes in the synovium of patients with early rheumatoid arthritis correlates with disease activity, and predicts absence of response to first line therapy.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE64819
Genome wide nucleosome specifity and function of chromatin remodellers in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64785
Genome wide nucleosome specifity and function of chromatin remodellers in embryonic stem cells [Chd9]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

How various ATP-dependent chromatin remodellers bind to nucleosomes to regulate transcription is not well defined in mammalian cells. Here, we present genome-wide remodeller-interacting nucleosome profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind to nucleosomes at specific positions, either at one or both nucleosomes that flank each side of nucleosome-free promoter regions (NFRs), at enhancer elements, or within gene bodies. At promoters, bidirectional transcription commonly initiates on either side of remodeller-bound nucleosomes. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. At active genes, certain remodellers are positive regulators of transcription, whereas others act as repressors. At bivalent genes, which are bound by repressive Polycomb complexes, the same remodellers act in the opposite way. Together, these findings reveal how remodellers integrate promoter nucleosomal architecture to regulate ES cell transcription programs.

Publication Title

Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64786
Genome wide nucleosome specifity and function of chromatin remodellers in embryonic stem cells [Ep400]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

How various ATP-dependent chromatin remodellers bind to nucleosomes to regulate transcription is not well defined in mammalian cells. Here, we present genome-wide remodeller-interacting nucleosome profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind to nucleosomes at specific positions, either at one or both nucleosomes that flank each side of nucleosome-free promoter regions (NFRs), at enhancer elements, or within gene bodies. At promoters, bidirectional transcription commonly initiates on either side of remodeller-bound nucleosomes. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. At active genes, certain remodellers are positive regulators of transcription, whereas others act as repressors. At bivalent genes, which are bound by repressive Polycomb complexes, the same remodellers act in the opposite way. Together, these findings reveal how remodellers integrate promoter nucleosomal architecture to regulate ES cell transcription programs.

Publication Title

Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18088
Correlation of molecular profiles and clinical outcome of stage UICC II colon cancer patients
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background Published multi-gene classifiers suggested outcome prediction for patients with stage UICC II colon cancer based on different gene expression signatures. However, there is currently no translation of these classifiers for application in routine diagnostic. Therefore, we aimed at validating own and published gene expression signatures employing methods which enable RNA and protein detection in routine diagnostic specimens. Results Immunohistochemistry was applied to 68 stage UICC II colon cancers to determine the protein expression of five selected previously published classifier genes (CDH17, LAT, CA2, EMR3, and TNFRSF11A). Correlation of protein expression data with clinical outcome within a 5-year post-surgery course failed to separate patients with a disease-free follow-up [Group DF] and relapse [Group R]). In addition, RNA from macrodissected tumor samples from 53 of these 68 patients was profiled on Affymetrix GeneChips (HG-U133 Plus 2.0). Prognostic signatures were generated by Nearest Shrunken Centroids with cross-validation. Although gene expression profiling allowed the identification of differentially expressed genes between the groups DF and R, a stable classification and prognosis signature was not discernable in our data. Furthermore, the application of previously published gene signatures consisting of 22 and 19 genes, respectively, to our gene expression data set using global tests and leave-one-out cross-validation was unable to predict clinical outcome (prediction rate 75.5% and 64.2%; n.s.). T-stage was the only independent prognostic factor for relapse in multivariate analysis with established clinical and pathological parameters including microsatellite status. Conclusions Our protein and gene expression analyses currently do not support application of molecular classifiers for prediction of clinical outcome in routine diagnostic as a basis for patient-orientated therapy in stage UICC II colon cancer. Further studies are needed to develop prognosis signatures applicable in patient care.

Publication Title

Molecular profiles and clinical outcome of stage UICC II colon cancer patients.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP118468
The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (Doublecortin-like kinase 3) which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington''s disease. Recent data obtained in studies related to cancer suggest DCLK3 could have anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington''s disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington''s disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodeling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including TADA3, a core component of SAGA complex. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodeling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration. Examination of DCLK3 as neuroprotector against mutant huntingtin in vivo and in vitro models. Overall design: Examination of DCLK3 as neuroprotector against mutant huntingtin in vitro experiments.

Publication Title

The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE59307
Aurora kinase A is upregulated in cutaneous T-cell lymphoma and represents a potential therapeutic target
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cutaneous T-cell lymphomas form a heterogeneous group of non-Hodgkin lymphomas characterized by only poor prognosis in advanced stage. Despite significant progress made in the identification of novel genes and pathways involved in the pathogenesis of cutaneous lymphoma, the therapeutic value of these findings has still to be proven. Here, we demonstrate by gene expression arrays that aurora kinase A is one of highly overexpressed genes of the serine/threonine kinase in CTCL. The finding was confirmed by qualitative RT-PCR, Western blotting and immunohistochemistry in CTCL cell lines and primary patient samples. Moreover, treatment with a specific aurora kinase A inhibitor blocks cell proliferation by inducing cell cycle arrest in G2 phase as well as apoptosis in CTCL cell lines. These new data provide a promising rationale for using aurora kinase A inhibition as a therapeutic modality of CTCL.

Publication Title

Aurora Kinase A Is Upregulated in Cutaneous T-Cell Lymphoma and Represents a Potential Therapeutic Target.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact