refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 95 results
Sort by

Filters

Technology

Platform

accession-icon GSE26719
Gene expression analysis of dendritic cells from normal or tumor bearing prostates
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Tumors cause the induction or repression of many genes associated with inflammation. To investigate the up and down regulation of genes associated with immune stimulation or immune tolerance RNA was isolated from dendritic cells from normal or tumor bearing prostate for microarray analysis.

Publication Title

FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26747
Gene expression analysis of dendritic cells from normal or tumor sections of human prostates
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Tumors cause the induction or repression of many genes associated with inflammation. To investigate the up and down regulation of genes associated with immune stimulation or immune tolerance RNA was isolated from dendritic cells from normal or tumor bearing prostate for microarray analysis.

Publication Title

FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE31620
MicroRNA-1 is a candidate tumor suppressor and prognostic marker
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

MicroRNAs (miRs) are small non-coding RNAs that can function as tumor suppressor genes. We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent dataset and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the candidate tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer cells. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair, and actin dynamics. This observation was further corroborated with protein expression analysis and 3-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters gH2A.X marker expression and affects the cellular organization of F-actin and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility.

Publication Title

MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE3837
Methylglyoxal treatment of MH-S cell line induces apoptosis and immune response
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mycobacteria-induced apoptosis of macrophages plays an important role in modulation of the host immune response involving TNF-alpha as major cytokine. The underlying mechanisms are still ill-defined. Here, we show for the first time that methylglyoxal (MG) and AGEs levels were elevated during mycobacterial infection of macrophages and that their increased levels mediated mycobacteria-induced apoptotic and immune response of macrophages. Moreover, we show that high levels of AGEs were formed at the sites of pulmonary tuberculosis. This observation represents the first evidence of the potential involvement of AGEs in tuberculosis and in infectious diseases in general. Global gene expression profiling of MG-treated macrophages reveals diversified potential roles of MG in cellular processes, including apoptosis, immune response, and growth regulation. The results of this study provide new insights into intervention strategies to develop therapeutic tools against infectious diseases in which MG and AGE production plays critical roles.

Publication Title

Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68802
An epithelial integrin regulates the amplitude of protective lung interferon responses
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Integrins facilitate intercellular movement and communication. Unlike the promiscuous activities of many integrins, 6 integrin is restricted to epithelia and partners exclusively with integrin V to modulate acute lung injury (ALI). Given that ALI is a complication of respiratory infection, we used mice lacking 6 integrin (6 KO) to probe the role of the epithelial layer in controlling the lung microenvironment during infection. We found 6 KO mice were protected from disease caused by influenza and Sendai virus infections. They were also protected from disease caused by Streptococcus pneumoniae infection alone and after prior influenza virus infection, the co-infection representing an often-lethal condition in humans. Resistance in the absence of epithelial 6 integrin was caused by intrinsic priming of the lung microenvironment by type I interferons through a mechanism involving transforming growth factor- regulation. Expression of 6 on epithelia suppresses the production of interferons, providing an advantage to the pathogen. Acute inhibition of 6 function may therefore provide a means to improve outcomes in lung microbial infections.

Publication Title

An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68138
An Immune and Inflammation Signature in Prostate Tumors of Smokers
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68135
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 1)
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68136
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 2)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE68137
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 3)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27370
81 human leukemia samples (affymetrix exon array)
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Intragenic microRNAs (miRNAs), including both intronic and exonic miRNAs, accounting approximately 50% of total mammalian miRNAs. Previous studies showed that intragenic miRNAs are often co-expressed with their host genes, and thus it was believed that intragenic miRNAs and their host genes are derived from the same primary transcripts. However, we provide evidence to show here that the observations from previous studies might be biased due to the small number and the predominance of "broadly conserved" intronic miRNAs they studied.

Publication Title

Young intragenic miRNAs are less coexpressed with host genes than old ones: implications of miRNA-host gene coevolution.

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact