refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17 results
Sort by

Filters

Technology

Platform

accession-icon GSE59361
Gene expression of SUM159-mir100 ALDH+ and ALDH- cells from CTRL or mir100-overexpressing group
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Emerging evidence suggest that miRNAs play an essential role in self-renewal and differentiation of normal and malignant stem cells by regulating the expression of key stem cell regulatory genes. Here we demonstrate that mir-100 expression is related to cellular differentiation state with lowest expression in cells displaying stem cell markers. Utilizing a tetracycline inducible lentivirus driving mir-100 expression, we found that mir-100 overexpression decreased breast cancer stem cells (BCSCs) and inhibited cancer cell proliferation in vitro and in mouse xenografts by targeting SMARCA5, SMARCD1 and BMPR2.

Publication Title

MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE78047
Expression data from human fetal cardiac MSCs
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The instrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterised. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts with only minor fluctuations over time in culture (from day 15 to day 48).

Publication Title

Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP098905
Effect of MDK expressing Melanoma cells conditioned media in Human LEC
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression analysis in hLECs treated with gain of function or loss of function of MDK in human melanoma cells. Overall design: Biological triplicates of hLEC treated for 3 days with EGM-2 MV conditioned media of melanoma cells. Cell line SK-Mel-147 KD for MDK (shMDK) and its corresponding control (shCtrl (LoF) and WM164 cell line overexpressing MDK (MDK) or an empty vector (NEG) (GoF) were used to produce the conditioned media.

Publication Title

Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE52626
Expression data from longissimus dorsi of backcross Iberian x Landrace individuals
  • organism-icon Sus scrofa
  • sample-icon 101 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The integration of the results of QTL fine-mapping with microarray expression data offers a promising tool for understanding the genetic mechanisms influencing complex traits as fatty acid composition in pigs. The expression level of each probe may be treated as a quantitative trait and the marker genotypes used to map loci with regulatory effect on the gene expression level (eQTL)

Publication Title

Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP063620
Retroviral Replicating Vectors Deliver Cytosine Deaminase Leading to Targeted 5-FU-Mediated Cytotoxicity in Multiple Human Cancer Types
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Toca 511 is a modified Retroviral Replicating Vector based on Moloney g-retrovirus with an amphotropic envelope. As an investigational cancer treatment, Toca 511 preferentially infects cancer cells without direct cell lysis and encodes an enhanced yeast cytosine deaminase that converts the antifungal drug 5-fluorocytosine to the anticancer drug, 5-fluorouracil. A panel of established human cancers cell lines, derived from glioblastoma, colon, and breast cancer tissue was used to evaluate parameters critical for effective anticancer activity. As part of these analyses, we profiled relative mRNA levels across these cell lines via RNA sequencing. Overall design: mRNA expression profiles across nine human cancer cell lines.

Publication Title

Retroviral Replicating Vectors Deliver Cytosine Deaminase Leading to Targeted 5-Fluorouracil-Mediated Cytotoxicity in Multiple Human Cancer Types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43164
Relapse from nicotine abstinence increases the pacemaking frequency of cholinergic habenular neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The discovery of genetic variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula- interpeduncular axis as a critical relay circuit in the control of nicotine addiction

Publication Title

Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE16510
Normal lung transcriptome distinguishes mouse lines with different susceptibility to inflammation and to tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

AIRmax and AIRmin mouse lines show a differential lung inflammatory response and differential lung tumor susceptibility after urethane treatment, thus constituting a good genetic model to investigate differences in gene expression profiles related to inflammatory response and lung tumor susceptibility. The transcript profile of ~24,000 known genes was analyzed in normal lung tissue of untreated and urethane-treated AIRmax and AIRmin mice. In lungs of untreated mice, inflammation associated genes involved in pathways such as leukocyte transendothelial migration, cell adhesion and tight junctions were differentially expressed in AIRmax versus AIRmin mice. Moreover, gene expression levels differed significantly in urethane-treated mice even at 21 days after treatment. In AIRmin mice, modulation of expression of genes involved in pathways associated with inflammatory response paralleled the previously observed persistent infiltration of inflammatory cells in the lung of these mice. In conclusion, a specific gene expression profile in normal lung tissue is associated with mouse line susceptibility or resistance to lung tumorigenesis and with different inflammatory response, and urethane treatment causes a long-lasting alteration of the lung gene expression profile that correlates with persistent inflammatory response of AIRmin mice.

Publication Title

Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE74611
Expression data from catalase stably transfected A375 human melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Reactive oxygen species (ROS) are implicated in tumor transformation by modulating proteins involved in differentiation, proliferation and invasion. In order to identify genes that may support melanoma progression or regression after an antioxidant system (AOS) response, we developed and characterized a human melanoma cell model with different levels of ROS by stably overexpressing the antioxidant enzyme catalase in A375 amelanotic melanoma cells, and whole genome gene expression patterns were analyzed by microarrays.

Publication Title

Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP067181
Transcriptome sequencing of porcine liver samples
  • organism-icon Sus scrofa
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Identification of genes and causal mutations regulating growth and fatness traits in pig. Overall design: Transcriptome sequencing of 10 liver samples of two groups of divergent pigs for growth and fatness.

Publication Title

Using RNA-Seq SNP data to reveal potential causal mutations related to pig production traits and RNA editing.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE141623
A novel whole blood gene expression signature for asthma, dermatitis and rhinitis multimorbidity in BAMSE cohort
  • organism-icon Homo sapiens
  • sample-icon 225 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Allergic diseases correspond to a broad range of hypersensitivity reactions, often occurring as co-morbidities. Investigation of the molecular basis of allergy is a challenge because of its highly heterogeneous nature. We combined large-scale and high-throughput gene expression technology and systems biology approaches to retrieve relevant biomarkers and signalling pathways.

Publication Title

A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact