refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon GSE80026
Comparison between WT and apl in a novel in vitro tissue culture system, VISUAL
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We established a novel in vitro tissue culture system (named VISUAL), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons

Publication Title

Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE80027
Cell-sorting analysis with SEOR1pro::SEOR1-YFP in a novel in vitro tissue culture system, VISUAL
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We established a novel in vitro tissue culture system (named VISUAL), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons

Publication Title

Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE103941
Expression data from mice liver drinking Hydrogen water
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Liver RNA samples from C57BL6 mice drinking Hydrogen water for 4 weeks

Publication Title

Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: meta-analyses of gene expression profiles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35159
The expression profiles of AML cell lines
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

EVI1 is one of the famous poor prognostic markers for a chemotherapy-resistant acute myeloid leukemia (AML). To identify molecular targets on the surface of leukemia cells with EVI1high expression, we compared the gene expression profiles of several AML cell lines by DNA microarray

Publication Title

CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP174478
Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Hepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload evoked by FBXL5 ablation gives rise to oxidative stress, tissue damage, inflammation and compensatory proliferation in hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting effect of FBXL5 deficiency in the liver is also operative in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis induced by iron overload. Dysregulation of FBXL5-mediated cellular iron homeostasis was also found to be associated with poor prognosis in human HCC, implicating FBXL5 plays a significant role in defense against hepatocarcinogenesis. Overall design: Total RNA was extracted from the nontumor and tumor tissue of an Alb-Cre/Fbxl5F/F male mouse (nontumor, n = 5; tumor, n = 5) or two littermate control Fbxl5F/F mice (nontumor, n = 6; tumor, n = 6) at 45 weeks of age.

Publication Title

Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP165983
Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Seckel syndrome (SS) is a rare spectrum of congenital severe microcephaly and dwarfism. One SS-causative gene is Ataxia Telangiectasia and Rad3-Related Protein (ATR), and ATR (c.2101 A>G) mutation causes skipping of exon 9, resulting in a hypomorphic ATR defect in patients. Because ATR governs DNA repair response, the mutation has been considered the cause of an impaired response to DNA replication stress in neuronal progenitor cells (NPCs), which is associated with the pathogenesis of microcephaly. However, the precise mechanism through which the mutation causes SS remains unclear. To address this issue, we established induced pluripotent stem cells (iPSCs) from fibroblasts carrying the ATR mutation and an isogenic ATR-corrected counterpart iPSC clone by genome editing. Interestingly, SS-patient-derived iPSCs (SS-iPSCs) exhibited cell type-specific splicing; exon 9 was dominantly skipped in fibroblasts and iPSC-derived NPCs, but it was included in undifferentiated iPSCs and definitive endodermal cells. SS-iPSC-derived NPCs (SS-NPCs) showed distinct expression profiles from ATR non-mutated NPCs. In SS-NPCs, abnormal mitotic spindles were observed more frequently than in gene-corrected counterparts, and the alignment of NPCs in the surface of the neurospheres was perturbed. Finally, we tested several splicing-modifying compounds and found that a CLK1 inhibitor, TG003, could pharmacologically rescue the exon 9 skipping in SS-NPCs. Furthermore, treatment with TG003 restored the function of ATR in SS-NPCs and decreased the frequency of abnormal mitotic events. In conclusion, our iPSC model of SS revealed a novel function of the ATR mutation in NPCs and NPC-specific missplicing, proving its usefulness for dissecting the pathophysiology of ATR-SS. Overall design: RNA-sequencing was conducted to identify the transcriptomic profiling of iPSC-derived cells

Publication Title

Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP071148
Gene and retrotransposon expression analysis in the F1 hybrid background of B6 and MSM for WT, Pld6 KO, and Dnmt3l KO male germ cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

mRNA sequencing analysis of FACS-purified leptotene/zygotene (L/Z) spermatocytes Overall design: Compare transcriptomes of WT, Pld6 KO, and Dnmt3l KO germ cells in the F1 hybrid background of B6 and MSM to study these mutations affecting gene expression due to nearby retrotransposons.

Publication Title

Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE57469
Expression data from common myeloid progenitor cells (CMP) of C57BL6 mouse
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Common myeloid progenitor cells from murine bone marrow were sorted according to ROS content using FACS with H2-DCFDA staining.

Publication Title

Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49053
Differentiation defective phenotypes revealed by large scale analyses of human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42449
Exon array analysis for SFEBq differentiation-defective clones and good clones
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

It remains controversial whether human induced pluripotent stem cells (hiPSCs) are distinct from human embryonic stem cells (hESCs) in their molecular signatures and differentiation properties. We examined the gene expression and DNA methylation of 49 hiPSC and 10 hESC lines and identified no molecular signatures that distinguished hiPSCs from hESCs. Comparisons of the in vitro directed neural differentiation of 40 hiPSC and four hESC lines showed that most hiPSC clones were comparable to hESCs. However, in seven hiPSC clones, significant amount of undifferentiated cells persisted even after neural differentiation and resulted in teratoma formation when transplantated into mouse brains. These differentiation-defective hiPSC clones were marked by higher expression of several genes, including those expressed from long terminal repeats of human endogenous retroviruses. These data demonstrated that many hiPSC clones are indistinguishable from hESCs, while some defective hiPSC clones need to be eliminated prior to their application for regenerative medicine.

Publication Title

Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact