refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 37 results
Sort by

Filters

Technology

Platform

accession-icon SRP131763
Temporal RNA-seq analysis of human skeletal myotubes synchronized in vitro
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. Extensive rhythmic transcription was observed in human skeletal muscle in comparison to in vitro cell culture. However, nearly half of the in vivo rhythmicity was lost at the mRNA accumulation level. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin stimulated glucose uptake were significantly reduced upon CLOCK depletion. Altogether, our findings suggest an essential role for cell-autonomous circadian clocks in coordinating muscle glucose homeostasis and lipid metabolism in humans. Overall design: 100 samples from 2 donors. Together with GSE108539, part of the same study described above.

Publication Title

Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE43133
CD47 Inhibits Self-renewal and Reprogramming by Regulating c-Myc and Other Stem Cell Transcription Factors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Signaling through the thrombospondin-1 receptor CD47 broadly limits cell and tissue survival of stress, but the molecular mechanisms are incompletely understood. We now show that loss of CD47 permits sustained proliferation of primary murine endothelial cells and enables these cells to spontaneously reprogram to form multipotent embryoid bodies. c-Myc, Klf4, Oct4, and Sox2 expression is elevated in CD47-null endothelial cells, in several tissues of CD47- or thrombospondin-1-null mice, and in a human T cell line lacking CD47. CD47 knockdown acutely increases mRNA levels of c-Myc and other stem cell transcription factors in cells and in vivo, whereas CD47 ligation by thrombospondin-1 suppresses c-Myc expression. The inhibitory effects of increasing CD47 levels can be overcome by maintaining c-Myc expression and are absent in cells with dysregulated c-Myc. Thus, CD47 antagonists enable cell self-renewal and reprogramming by overcoming negative regulation of c-Myc and other stem cell transcription factors.

Publication Title

Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58404
Identification of a Mammalian Silicon Transporter
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Silicon (Si) has long been known to play a major physiological role in certain organisms, including some sponges and many diatoms and higher plants, leading to the recent identification of multiple proteins responsible for silicon transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding in biochemical pathways that enable silicon homeostasis. Here we report the identification of a mammalian efflux silicon transporter, namely Slc34a2 (also known as NaPiIIb), which was upregulated in the kidneys of rats following chronic dietary silicon deprivation. When heterologously expressed in Xenopus laevis oocytes, the protein displayed marked silicon transport activity, specifically efflux, comparable to plant OsLsi2 transfected in the same fashion and independent of sodium and/or phosphate influx. This is the first evidence for a specific active transporter protein for silicon in mammals and suggests an important role for silicon in vertebrates.

Publication Title

Identification of a mammalian silicon transporter.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP101298
RNAseq of CCRF-CEM, a T-cell acute lymphoblastic leukemia cell line, after knockdown with 2 control hairpins and 6 hairpins targeting the PRC2 complex.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The data was used to study mechanisms of apoptosis resistance induced by loss of PRC2. Overall design: CCRF-CEM cells infected with shLuciferase, shGFP, shEZH2.1, shEZH2.4, shEED2, shEED5, shSUZ12.2, shSUZ12.3 were harvested, RNA isolated, and RNAsequencing performed on HiSeq 2000.

Publication Title

PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE26736
Mulcom: a multiple comparison statistical test for microarray data in Bioconductor
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mulcom: a multiple comparison statistical test for microarray data in Bioconductor.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE26732
Mulcom: a multiple comparison statistical test for microarray data in Bioconductor (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background

Publication Title

Mulcom: a multiple comparison statistical test for microarray data in Bioconductor.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE59375
Gene expression profile of the neonatal female mouse brain after administration of testosterone propionate.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of this study is to investigate the gene expression profiles during masculinization of neonatal female mice brain by exogenous androgen treatment.

Publication Title

Gene expression profile of the neonatal female mouse brain after administration of testosterone propionate.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE8711
Knock-in of Kras G12D in mouse MLP-29 cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconSentrix MouseRef-8 Expression BeadChip (Target ID)

Description

KRAS mutations are present at a high frequency in human cancers. The development of therapies targeting mutated KRAS requires cellular and animal preclinical models. We exploited adeno-associated virus-mediated homologous recombination to insert the KRAS G12D allele in the genome of mouse somatic cells. Heterozygous mutant cells displayed a constitutively active Kras protein, marked morphologic changes, increased proliferation and motility but were not transformed. On the contrary, mouse cells in which we overexpressed the corresponding KRAS cDNA were readily transformed. The levels of Kras activation in knock-in cells were comparable with those present in human cancer cells carrying the corresponding mutation. KRAS-mutated cells were compared with their wild-type counterparts by gene expression profiling, leading to the definition of a "mutated KRAS-KI signature" of 345 genes. This signature was capable of classifying mouse and human cancers according to their KRAS mutational status, with an accuracy similar or better than published Ras signatures. The isogenic cells that we have developed recapitulate the oncogenic activation of Kras occurring in cancer and represent new models for studying Kras-mediated transformation. Our results have implications for the identification of human tumors in which the oncogenic KRAS transcriptional response is activated and suggest new strategies to build mouse models of tumor progression.

Publication Title

Knock-in of oncogenic Kras does not transform mouse somatic cells but triggers a transcriptional response that classifies human cancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP096690
The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Germinal center (GC) B cells cycle between two states, the light zone (LZ) and the dark zone (DZ), and in the latter they proliferate and hypermutate their immunoglobulin genes. How this functional transition takes place is still controversial. In this study, we demonstrate that ablation of Foxo1 after GC development led to the loss of the DZ GC B cells and disruption of the GC architecture. Mechanistically, even upon provision of adequate T cell help, Foxo1-deficient GC B cells showed less proliferative expansion than controls. Moreover, we found that the transcription factor BATF was transiently induced in LZ GC B cells in a Foxo1-dependent manner and that deletion of BATF similarly led to GC disruption. Thus, our results are consistent with a model where the switch from the LZ to the DZ is triggered after receipt of T cell help, and suggest that Foxo1-mediated BATF up-regulation is at least partly involved in this switch. Overall design: mRNA profiles of wild-type DZ, LZ, and Foxo1-deficient GC B cells were generated by deep sequencing in triplicate, using Illumina HiSeq 1500.

Publication Title

The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP047440
The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem-cell-niche function
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Mesenchymal stem cells (MSCs) And osteolineage cells contribute to the hematopoietic stem cell (HSC) Niche in the bone marrow of long bones. However, Their developmental relationships remain unclear. Here we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin- MSCs participate in fetal skeletogenesis, And lose MSC activity soon after birth. In contrast, Quiescent neural-crest-derived nestin+ Cells in the same bones preserve MSC activity, But do not generate fetal chondrocytes. Instead, They differentiate into HSC-niche-forming MSCs, Helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ PDGFR- Cell population also contains Schwann-cell precursors, But does not comprise mature Schwann cells. Thus, In the developing bone marrow HSC-niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, And ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. Overall design: Total RNA was isolated from small numbers of FACS sorted stromal cells, obtained from neonatal Nes-Gfp bone marrow preparations (2 biological replicates). Each independent set of samples was obtained from pooled skeletal elements (long bones and sterna) form multiple littermates.

Publication Title

The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact