refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 40 results
Sort by

Filters

Technology

Platform

accession-icon GSE6043
Translation initiation factor 4E confers primary human cells with neoplastic properties
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Deregulation of translational control is an obligatory step in oncogenesis; however, this step has not been addressed by prior genomic and transcriptional profiling studies of cancer biology. Here we simulate the translational deregulation found in cancer by ectopically over expressing translation initiation factor eIF4E in primary human mammary epithelial cells; and examine its impact on cell biology and the pattern of ribosomal recruitment to mRNA genome wide. Over expression of eIF4E allows cells to bypass M0 premature growth arrest, but does not confer other malignant properties. However, in concert with hTERT, eIF4E imparts cells with growth and survival autonomy - and profoundly alters the pattern of polyribosome-associated mRNA encoding cell cycle and apoptosis regulators. The translational response to increased eIF4E is not only a unidirectional activation of oncogenic drivers, but also consists of complex intrinsic translational mechanisms that mitigate the acquisition of neoplastic properties.

Publication Title

Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4668
Expression data from hormone-starved MCF7/BUS cell culture
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To obtain comprehensive information on 17beta-estradiol (E2) sensitivity of genes that are inducible or suppressible by this hormone, we designed a method that determines ligand sensitivities of large numbers of genes using DNA microarray and a set of simple Perl computer scripts implementing the standard metric statistics, and employed it to characterize effects of low (0-100 pM) concentrations of E2 on the transcriptome profile of MCF7/BUS human breast cancer cells, whose E2 dose-dependent growth curve saturated with 100 pM E2. Evaluation of changes in mRNA expression for all genes covered by the DNA microarray indicated that, at a very low concentration (10 pM), E2 suppressed 3~5 times larger numbers of genes than it induced, whereas at higher concentrations (30-100 pM) it induced 1.5~2 times more genes than it suppressed. Using clearly defined statistical criteria, E2-inducible genes were categorized into several classes based on their E2 sensitivities. This approach of hormone sensitivity analysis revealed that expression of two previously reported E2-inducible autocrine growth factors, TGF-? and SDF-1, was not affected by 100 pM and lower concentrations of E2 but strongly enhanced by 10 nM E2, which was far higher than the concentration that saturated the E2 dose-dependent growth curve of MCF7/BUS cells. These observations suggested that biological actions of E2 are derived from expression of multiple genes whose E2 sensitivities differ significantly and, hence, dependent on the E2 concentration especially when it is lower than the saturating level, emphasizing the importance of characterizing the ligand dose-dependent aspects of E2 actions. (paper abstract)

Publication Title

Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44039
TET1 is a maintenance DNA demethylase that prevents methylation spreading in adult cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE50016
TET1 is a maintenance DNA demethylase that prevents methylation spreading in adult cells [cDNA microarray]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Illumina Genome Analyzer II

Description

We report that full length TET1 (TET1-FL) overexpression fails to induce global DNA demethylation in HEK293T cells. The preferential binding of TET1-FL to hypomethylated CpG islands (CGIs) through its CXXC domain leads to its inhibited 5-hydroxymethylcytosine (5hmC) production as methylation level increases. TET1-FL-induced 5hmC accumulates at CGI edges, while TET1 knockdown induces methylation spreading from methylated edges into hypomethylated CGIs. However, TET1 can regulate gene transcription independent of its dioxygenase catalytic function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically maintains the DNA hypomethylation state of CGIs in adult cells.

Publication Title

TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE50705
Xenoestrogen Dose-dependent Transcriptomal Changes in MCF-7 Human Breast Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 344 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptome analysis of MCF-7 cells exposed for 48 hours to various concentrations of xenoestrogen chemicals.

Publication Title

Expressomal approach for comprehensive analysis and visualization of ligand sensitivities of xenoestrogen responsive genes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE41184
1,25-dihydroxyvitamin D3-induced genes in mouse mixed neuron-glial cell cultures
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptomic response of mouse mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin D3

Publication Title

The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE8024
Murine ES cells, neural precursor cells and embryonic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Expression profiles for isogenic (129SvJae x C57BL/6) murine embryonic stem (ES) cells, neural precursors (NPC) obtained through in vitro differentiation of the ES cells, and embryonic fibroblasts (MEF) obtained at day 13.5.

Publication Title

Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48373
Comparative transcriptomic profiling of liver tissue from lean (fa/+) female Zucker rats (~15 weeks old) fed a standard diet supplemented (0.5% w/w) with a rosemary extract enriched in carnosic acid (40% CA)
  • organism-icon Rattus norvegicus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

We used Affymetrix microarrays to investigate gene expression changes in the liver of lean female Zucker rats exposed to a normal diet supplemented with a rosemary extract rich in the diterpenic compound, carnosic acid (CA).

Publication Title

A rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE80983
Transcriptomes of mouse PGCLCs isolated from 6-day culture embryoid bodies were compared with transcriptomes of their precur cells (ESCs, iPSCs, and EpiLCs) and E12.5 in vivo mouse PGCs
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomes of mouse E12.5 primordial germ cells (PGCs), primordial germ cell-like cells (PGCLCs) isolated from 6-day culture embryoid bodies, and the precursor pluripotent stem cells [embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] and epiblast-like cells (EpiLCs)

Publication Title

Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE68646
Cardioprotective signature of short-term caloric restriction
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

OBJECTIVE: To understand the molecular pathways underlying the cardiac preconditioning effect of short-term caloric restriction (CR). BACKGROUND: Lifelong CR has been suggested to reduce the incidence of cardiovascular disease through a variety of mechanisms. However, prolonged adherence to a CR life-style is difficult. Here we show how short-term CR protects the mouse heart from ischemia. METHODS: Male 10-12 wk old C57bl/6 mice were randomly assigned to an ad libitum (AL) diet with free access to regular chow, or CR, receiving 30% less food over a period of 7 days (d), prior to myocardial infarction (MI) via permanent coronary ligation. Prior to MI (d8), the left ventricles (LV) of AL and CR mice were collected for Western blot, DNA and microRNA (miR) analyses. In separate groups, infarct size, cardiac hemodynamics and protein abundance of caspase 3 was measured at d2 post-MI. RESULTS: This short-term model of CR was associated with cardio-protection, as evidenced by decreased infarct size (18.52.4% vs. 26.61.7%, N=10/group; P=0.01). cDNA and miR profiles pre-MI (N=5/group) identified genes modulated by short-term CR to be associated with circadian clock, oxidative stress, immune function, apoptosis, metabolism, angiogenesis, cytoskeleton and extracellular matrix (ECM). Western blots pre-MI revealed CR-associated increases in phosphorylated Akt and GSK3, reduced levels of phosphorylated AMPK and mitochondrial related proteins PGC-1, cytochrome C and cyclooxygenase (COX) IV, with no differences in the levels of phosphorylated eNOS or MAPK (ERK1/2; p38). CONCLUSIONS: Short-term CR for only 7d represents a preconditioning strategy that limits infarct size. It is associated with a unique gene and miR signature, including the activation of specific pro-survival kinases. These findings may have implications for therapeutic use of short-term CR. .

Publication Title

Cardioprotective Signature of Short-Term Caloric Restriction.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact