refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 131 results
Sort by

Filters

Technology

Platform

accession-icon DRP003593
Gene expression profiles of mouse spinal motor neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Gene expression profiles of mouse spinal motor neurons are compared to those in cells in posterior horn region.

Publication Title

R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP100463
Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 620 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Pressure overload induces a transition from cardiac hypertrophy to heart failure, but its underlying mechanisms remain elusive. Here we reconstruct a trajectory of cardiomyocyte remodeling and clarify distinct cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure, by integrating single-cardiomyocyte transcriptome with cell morphology, epigenomic state and heart function. During early hypertrophy, cardiomyocytes activate mitochondrial translation/metabolism genes, whose expression is correlated with cell size and linked to ERK1/2 and NRF1/2 transcriptional networks. Persistent overload leads to a bifurcation into adaptive and failing cardiomyocytes, and p53 signaling is specifically activated in late hypertrophy. Cardiomyocyte-specific p53 deletion shows that cardiomyocyte remodeling is initiated by p53-independent mitochondrial activation and morphological hypertrophy, followed by p53-dependent mitochondrial inhibition, morphological elongation, and heart failure gene program activation. Human single-cardiomyocyte analysis validates the conservation of the pathogenic transcriptional signatures. Collectively, cardiomyocyte identity is encoded in transcriptional programs that orchestrate morphological and functional phenotypes. Overall design: Integrative analysis of single-cardiomyocyte RNA-seq of pressure-overload-induced heart failure model mice and heart failure patients with dilated cardiomyopathy, single-cell morphology, cardiac function and genetic perturbation

Publication Title

Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE83078
Pseudomonas aeruginosa PAO1 response to sphingomyelin
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Analysis of Pseudomonas aeruginosa PAO1 treated with 200 M sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.

Publication Title

Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE78137
Activity-dependent transcriptional profiling of basolateral amygdala neurons in response to valence-specific stimuli
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Activity-dependent transcriptional profiling was performed in the basolateral amygdala in order to identify unique genetic markers for functionally distinct neuronal populations

Publication Title

Antagonistic negative and positive neurons of the basolateral amygdala.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8943
Satin mice stomach antrum
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Transcription factor Foxq1 controls mucin gene expression and granule content in mouse stomach surface mucous cells

Publication Title

Transcription factor foxq1 controls mucin gene expression and granule content in mouse stomach surface mucous cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44868
Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE43051
Gene expression profiling of neural HDAC inhibition
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Histone deacetylase inhibitors (HDACis) have been shown to potentiate hippocampal-dependent memory and synaptic plasticity and to ameliorate cognitive deficits and degeneration in animal models for different neuropsychiatric conditions. However, the impact of these drugs on hippocampal histone acetylation and gene expression profiles at the genomic level, and the molecular mechanisms that underlie their specificity and beneficial effects in neural tissue, remains obscure. Here, we mapped four relevant histone marks (H3K4me3, AcH3K9,14, AcH4K12 and pan-AcH2B) in hippocampal chromatin and investigated at the whole-genome level the impact of HDAC inhibition on acetylation profiles and basal and activity-driven gene expression. HDAC inhibition caused a dramatic histone hyperacetylation that was largely restricted to active loci pre-marked with H3K4me3 and AcH3K9,14. In addition, the comparison of Chromatin immunoprecipitation sequencing and gene expression profiles indicated that Trichostatin A-induced histone hyperacetylation, like histone hypoacetylation induced by histone acetyltransferase deficiency, had a modest impact on hippocampal gene expression and did not affect the transient transcriptional response to novelty exposure. However, HDAC inhibition caused the rapid induction of a homeostatic gene program related to chromatin deacetylation. These results illuminate both the relationship between hippocampal gene expression and histone acetylation and the mechanism of action of these important neuropsychiatric drugs.

Publication Title

Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13589
Gene expression of E. coli MG1655 pOX38Km at the outside and inside of biofilms
  • organism-icon Escherichia coli
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Gene expression changes between outside and inside of biofilms were investigated. The gene expression was compared between the outside and inside of the biofilms. At the same time, the gene expressions were also compared with exponential phase and stationary phase in planktonic cells. The gene expression analysis showed that the physiological activities were higher at the outside of the biofilms than those at the inside of the biofilms. The genes induced at the ouside of the biofilms included genes involved in the stress responses and adhesions.

Publication Title

Localized expression profiles of rpoS in Escherichia coli biofilms.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3713
The AIN-centered DCN of delayed-type eyeblink conditioned mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Anterior interpositus nucleus (AIN) is a proposed site of memory formation of eyeblink conditioning. A large part of the underlying molecular events, however, remains unknown. To elucidate molecular mechanisms, we examined transcriptional changes in the AIN of mice trained with delayed-type eyeblink conditioning

Publication Title

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP128859
RNA-seq of shEZH2 cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Downregulation of EZH2 Leads to Cellular Senescence with Features of SASP Overall design: Cells were infected with a lentivirus vector expressing shRNA against EZH2 and harvested at 4 and 8 days after infection. Total RNA was harvested from cells using Trizol reagent (Invitrogen) and further purified using the Purelink RNA Mini kit (Invitrogen) with DNase I digestion. RNA library preparation with polyA selection and Illumina HiSeq 2x150bp sequencing was performed by GeneWiz Inc. Paired-end reads were quality trimmed using Trim galore v0.4.0 and subsequently aligned to the human reference genome, hg19, using HISAT2 v2.1.0. Reads mapping to annotated genes were quantified using featureCounts (Liao et al., 2014). Differential gene expression was determined using DESeq2 v1.12.4 (Love et al., 2014) and significance was defined as FDR-corrected p-values of <0.05. The log2 fold change for each gene was used to rank the list of genes for GSEAPreranked analysis (Subramanian et al., 2005). FPKM values were calculated using DESeq2 and Z-scores were generated from FPKMs

Publication Title

Regulation of Cellular Senescence by Polycomb Chromatin Modifiers through Distinct DNA Damage- and Histone Methylation-Dependent Pathways.

Sample Metadata Fields

Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact