refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE106073
SNAIL1-mediated Downregulation of FOXA Proteins Facilitates the Inactivation of Transcriptional Enhancer Elements at Key Epithelial Genes in Colorectal Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Converting epithelial into mesenchymal cells through epithelial-mesenchymal transition (EMT) requires massive changes in gene expression. How this is brought about is currently not clear. Here we examined the impact of the EMT master regulator SNAIL1 on the FOXA family of transcription factors which are distinguished by their particular competence to induce chromatin reorganization for the activation of transcriptional enhancer elements. We show that the expression of SNAIL1 and FOXA genes is anti-correlated in transcriptomes of colorectal tumors and cell lines. In two cellular EMT models, ectopically expressed Snail1 downregulates FOXA factors and directly represses FOXA1. To elucidate how FOXA factors contribute to the control of epithelial gene expression, we determined by ChIP-seq data analysis FOXA chromosomal distribution in relation to chromatin structural features characterizing distinct states of transcriptional activity. This revealed a preferential localization of FOXA1 and FOXA2 to transcriptional enhancers at signature genes that distinguish epithelial from mesenchymal colon tumors. To validate the significance of this association, we investigated the impact of FOXA factors on structure and function of transcriptional enhancers at the epithelial genes CDH1, CDX2 and EPHB3. Expression of dominant negative FOXA2 led to chromatin condensation at these enhancer elements. Site- directed mutagenesis of FOXA binding sites in reporter gene constructs and by genome- editing in situ impaired enhancer activity and completely abolished the active chromatin state of the EPHB3 enhancer. Conversely, expression of FOXA factors in cells with inactive CDX2 and EPHB3 enhancers led to chromatin opening and de novo deposition of the H3K4me1 and H3K27ac marks. These findings establish the pioneer function of FOXA factors at enhancer regions of epithelial genes and demonstrate their essential role in maintaining enhancer structure and function. Thus, by repressing FOXA family members, Snail1 targets transcription factors at strategically important positions in gene-regulatory hierarchies which may facilitate transcriptional reprogramming during EMT.

Publication Title

SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE37584
Expression data from MS individuals homozygous for IL7R haplotypes
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide association studies in multiple sclerosis (MS) identified a polymorphism (rs6897932) located in the coding region of the alpha chain of the cytokine receptor interleukin 7 receptor (IL7R) as a component that increases susceptibility to develop the disease. This single nucleotide polymorphism (SNP) affects the splicing of the primary transcript leading to genotype-defined transcript ratios encoding either a full length membrane spanning form or a soluble receptor chain. Genotyping at the IL7R locus reveals that the region can be described by four haplotypes. Interestingly, only one out of three haplotypes harbouring the associated SNP is positively associated with MS whereas the other two do not show association. The minor allele containing haplotype shows a reduced susceptibility to develop MS. We hypothesized that additional functional or phenotypic differences exist between individuals homozygous for haplotypes shown to have either positive, negative, or neutral effect, on susceptibility to develop MS. Gene expression profiles of CD4+ T cells from MS individuals before and after stimulation with IL7 were recorded. Haplotype-specific gene signatures were found indicating small alterations in IL7/IL7R signal processing/sensitivity through JAK/STAT and p38/MAPK14. We can not exclude that the obtained signatures result from differences within the CD4+ T cell compartment that, in fact, should be seen as a consequence of systemic haplotype-specific processing of homeostatic and proliferation signals transmitted through IL7/IL7R.

Publication Title

IL7RA haplotype-associated alterations in cellular immune function and gene expression patterns in multiple sclerosis.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Subject

View Samples
accession-icon SRP065763
IFN-kappa inhibits HPV31 transcription by inducing Sp100 proteins
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Using doxycycline-inducible IFN-kappa expression in CIN612-9E cells, which maintain extrachromosomally replicating HPV31 genomes, we demonstrate that IFN-kappa inhibits the growth of these cells and reduces viral transcription and replication. Interestingly, the initiation of viral early transcription was already inhibited 4-6h after IFN-kappa expression. This was also observed with recombinant IFN-beta suggesting a common mechanism of IFNs. RNA-seq analysis identified 1367 IFN-kappa regulated genes of which 221 were modulated >2-fold. The majority of those (71%) matched known ISGs confirming that IFN-kappa acts as a bona fide type I IFN in hr-HPV-positive keratinocytes. RNAi and co-transfection experiments indicate that the inhibition of viral transcription is mainly due to the induction of Sp100 proteins by IFN-kappa. Overall design: CIN612-9E/pInd-IFN-kappa were induced for 4h with 1µg/ml doxycyclin or not. Three biological replicates were analyzed.

Publication Title

Interferon Kappa Inhibits Human Papillomavirus 31 Transcription by Inducing Sp100 Proteins.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057563
Investigating GPR34 expression regulation using whole transcriptome sequencing of spleens and dendritic cells from wildtype and GPR34 knockout mice
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ, Illumina HiSeq 2500

Description

Naive spleens as well as naive and LPS-treated dendritic cells from wildtype and GPR34-/- mice were sequenced to integrate expression profiles with protein interaction networks and find functional modules that are affected by GPR34 Overall design: Expression profiles of dendritic cells and whole spleens were generated using Illumina HiSeq 2500/ Illumina HiScan

Publication Title

Dendritic Cells Regulate GPR34 through Mitogenic Signals and Undergo Apoptosis in Its Absence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP002632
Time series of standard and delayed bone healing in Ovis Aries
  • organism-icon Ovis aries
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Fracture healing is a highly complex regenerative process. The sheep is an important large-animal model for studying delayed fracture healing. Here we used next-generation sequencing (Illimuna GA IIx) for gene expression analysis (RNAseq) in two conditional groups - standard and delayed healing. In both groups sequential biopsies 7, 11, 14 and 21 days after surgery were collected from callus tissue and annalized. For all timepoints and conditions the samples were pooled (n=6), except for day 21 standard (n=5).

Publication Title

Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76563
The study of inflammatory responses in mammalian macrophages with LPS stimulation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76561
LPS stimulation of human PBMC-derived macrophages
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions and its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalyzing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. Using a combination of literature information, transcription factor prediction models and genome-wide expression arrays, we inferred the regulatory network of IRG1 in mouse and human macrophages.

Publication Title

Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76562
LPS stimulation of Mouse (RAW 264.7) macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions and its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalyzing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. Using a combination of literature information, transcription factor prediction models and genome-wide expression arrays, we inferred the regulatory network of IRG1 in mouse and human macrophages.

Publication Title

Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11188
Gene-expression profiles of non-tumor-reactive CD8+ T cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Non-tumor-reactive T cells are characterized by the inabilitzy to lyse autologous tumor cells, low to intermediate avidity TCRs and lack of NY-ESO-1 peptide tetramer binding. However most strikingly, non-tumor-reactive T cells are characterized by a molecular program associated with division arrest anergy with elevated expression of the inhibitory molecule p27kip1. This is accompanied by elevated expression of inhibitory molecules and reduced levels of transcription factors involved in T cell activation. Frequency analysis of the inhibited T cell population using the established molecular fingerprint as a novel biomarker might be applied for cancer vaccine development and optimization.

Publication Title

Cancer vaccine enhanced, non-tumor-reactive CD8(+) T cells exhibit a distinct molecular program associated with "division arrest anergy".

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44247
Lipoprotein lipase in chronic lymphocytic leukemia - strong biomarker with lack of functional significance
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

LPL co-deregulated genes after LPL specific siRNA knock-down

Publication Title

Lipoprotein lipase in chronic lymphocytic leukaemia - strong biomarker with lack of functional significance.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact