refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 77 results
Sort by

Filters

Technology

Platform

accession-icon GSE69590
HBV Infection and DNA Stimulation Induce a Unique Innate Immune Response in Hepatocytes
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background and Aims: Recent identification of intracellular DNA sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and autoimmunity suggests a role for these processes in liver pathology. The presence of these pathways in the liver and their role in HBV infection is unknown. Methods: In order to characterize the role of DNA sensing pathways in the liver, we utilized in vitro models. Microarray was performed on DNA treated and HBV infected hepatoma primary human hepatocytes. Results: Here we show that HBV infection and foreign DNA results in a significant innate immune response characterized by the production of inflammatory chemokines.

Publication Title

Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP098047
Characterization of murine pulmonary interstitial macrophages at steady state
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

In this study we demonstrate that the lung mononuclear phagocyte system comprises three interstitial macrophages (IMs), as well as alveolar macrophages (AMs), dendritic cells and few extravascular monocytes. Through cell sorting and RNAseq analysis we were able to identify transcriptional similarities and differences between the three pulmonary IM subtypes, with reference to the more well-characterized alveolar macrophage Overall design: Pulmonary Interstitial and Alveolar macrophages were FACS sorted from the lungs of steady state 8-10 week old B6 mice, in triplicate. Extracted RNA was examined by RNAsequencing. The tar archive GSE94135_jakubzick_2019*tar available at the foot of this page contains the supplementary processed data used for comparisons with data in GSE132911. Data were processed as described in GSE132911.

Publication Title

Three Unique Interstitial Macrophages in the Murine Lung at Steady State.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP099085
Comparing murine lung resident alveolar Siglec-F(high) macrophages to CD11b(high) macrophages following bleomycin injury
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Macrophages (MF) have been shown to contribute to fibrogenesis, however the underlying mechanisms and specific MF subsets involved remain unclear. Lung MF can be divided into two subsets: Siglec-Fhi resident alveolar MF and CD11bhi MF that primarily arise from immigrating monocytes. RNA-seq analysis was performed to compare these MF subsets during fibrosis. CD11bhi MF, not Siglec-Fhi MF, expressed high levels of pro-fibrotic chemokines and growth factors. Overall design: C56BL/6 WT mice were treated intratracheally with bleomycin. 8 days later, CD64+Mertk+ MF were sorted into Siglec-F(high) and CD11b(high) subsets. SiglecF(high) MF from naïve mice were also sorted. RNA was isolated and RNA-seq was performed to compare MF subsets.

Publication Title

Deletion of c-FLIP from CD11b<sup>hi</sup> Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE33562
Preclinical analysis of the gamma secretase inhibitor PF-030840214 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of gamma-secretase inhibitors (GSIs). Here, we characterized the interaction between PF-03084014, a clinically-relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Molecular characterization of the response to PF-03084014 plus glucocorticoids through gene expression profiling revealed transcriptional upregulation of the glucocorticoid receptor as the mechanism mediating the enhanced glucocorticoid response. Moreover, treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment was highly effective at reversing PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results suggest that combination of PF-03084014 treatment with glucocorticoids may be well-tolerated and highly active for the treatment of glucorticoid-resistant T-ALL.

Publication Title

Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE32034
Tissue-specific differences in PPAR control of macrophage function.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PPAR is known for its anti-inflammatory actions in macrophages. However, which macrophage populations express PPAR in vivo and how it regulates tissue homeostasis in the steady state and during inflammation is not completely understood. We show that lung and spleen macrophages constitutively expressed PPAR, while other macrophage populations did not. Recruitment of monocytes to sites of inflammation was associated with induction of PPAR as they differentiated to macrophages. Its absence in these macrophages led to failed resolution of inflammation, characterized by persistent, low-level recruitment of leukocytes. Conversely, PPAR agonists supported an earlier cessation in leukocyte recruitment during resolution of acute inflammation and likewise suppressed monocyte recruitment to chronically inflamed atherosclerotic vessels. In the steady state, PPAR deficiency in macrophages had no obvious impact in the spleen but profoundly altered cellular lipid homeostasis in lung macrophages. Reminiscent of pulmonary alveolar proteinosis, LysM-Cre x PPARflox/flox mice displayed mild leukocytic inflammation in the steady-state lung and succumbed faster to mortality upon infection with S. pneumoniae. Surprisingly, this mortality was not due to overly exuberant inflammation, but instead to impaired bacterial clearance. Thus, in addition to its anti-inflammatory role in promoting resolution of inflammation, PPAR sustains functionality in lung macrophages and thereby has a pivotal role in supporting pulmonary host defense.

Publication Title

Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE39987
Oncogenic NRAS Signaling Differentially Regulates Survival and Proliferation in Melanoma.
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39984
Comparison of the genetic extinction of NRAS to pharmacological MEK inhibition in an inducible mouse model of melanoma
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Since direct pharmacological inhibition of RAS has thus far been unsuccessful, we explored system biology approaches to identify synergistic drug combination(s) that can mimic direct RAS inhibition. Leveraging an inducible mouse model of NRAS-mutant melanoma, we compare pharmacological MEK inhibition to complete NRAS-Q61K extinction in vivo. NRAS-Q61K extinction leads to a complete and durable tumor regression by enhancing both apoptosis and cell cycle arrest. By contrast, MEK inhibition only produces tumor stasis at best and we find that it robustly activates apoptosis but does not significantly impede proliferation.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39985
A timecourse analysis of the genetic extinction of NRAS in an inducible mouse model of melanoma.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We sought to understand the pathways involved in NRAS extinction over time using a doxycycline-dependent, inducible mouse model of melanoma. This data provides insights into the temporal dynamics of downstream NRAS signaling and helps to correlate differentially affected pathways.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35414
Molecular sequelae of Nampt Inhibition in Human Multiple Myeloma cell line
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Evaluation of specific coordinated pattern of transcriptional events consistent with anti-myeloma activity of FK866 (chemical Nampt inhibitor)

Publication Title

Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11757
Cell cycle dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer and melanoma cell lines.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v2.0 expression beadchip

Description

CD133 (Prominin1) is pentaspan transmembrane glycoprotein expressed in several stem cell populations and cancers. Reactivity with an antibody (AC133) to a glycoslyated form of CD133 has been widely used for the enrichment of cells with tumor initiating activity in xenograph transplantation assays. We have found by fluorescence-activated cell sorting that increased AC133 reactivity in human embryonic stem cells, colon cancer and melanoma cells is correlated with increased DNA content and reciprocally, that the least reactive cells are in the G1/G0 portion of the cell cycle. Continued cultivation of cells sorted on the basis of high and low AC133 reactivity results in a normalization of the cell reactivity profiles indicating that cells with low AC133 reactivity can generate highly reactive cells as they resume proliferation. The association of AC133 with actively cycling cells may contribute to the basis for enrichment for tumor initiating activity.

Publication Title

Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact