refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 474 results
Sort by

Filters

Technology

Platform

accession-icon GSE31419
The epigenetic cell-cycle regulator HCF-1 is recruited to active CpG island-containing promoters together with the ZNF143, THAP11(Ronin), YY-1 and GABP transcription factors.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE31412
Expression changes in HeLa cells treated with siRNA against HCFC1 or control luciferase
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared in triplicate mRNA levels from cells treated with siRNA against either HCF-1 or, as a negative control, luciferase. We observed that 19% of Refseq annotated genes are differentially expressed (either up or down regulated with a multiple testing corrected p value of 0.05) upon depletion of HCF-1. This large number of differentially expressed genes upon HCF-1 depletion demonstrates a broad role of HCF-1 in the regulation of gene expression.

Publication Title

HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE36418
Genome wide expression in ADAMTS13-deficient thrombotic thrombocytopenic purpura TTP
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This study sought correlates of relapse tendency in TTP by examining gene expression profiles in peripheral blood leukocytes from patients with acquired ADAMTS13-deficient TTP in remission and matched healthy controls for global gene expression and autoantibodies.

Publication Title

Ribosomal and immune transcripts associate with relapse in acquired ADAMTS13-deficient thrombotic thrombocytopenic purpura.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP066420
Ezh2 and Runx1 Mutations Targeted to Early Lymphoid Progenitors Collaborate to Promote Early Thymic Progenitor Leukemia [RNA-Seq 2]
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Understanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse Mac1+ bone marrow cells from three genotypes

Publication Title

Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP066416
Ezh2 and Runx1 Mutations Targeted to Early Lymphoid Progenitors Collaborate to Promote Early Thymic Progenitor Leukemia [RNA-Seq 1]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Understanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse early thymic precursors from three genotypes

Publication Title

Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE9432
A SAGA-Independent Function of SPT3 Mediates Transcriptional Deregulation in a Mutant of the Ccr4-Not Complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The conserved multi-subunit Ccr4-Not complex regulates gene expression in diverse ways. In this work, we characterize the suppression of temperature sensitivity associated with a mutation in the gene encoding the scaffold subunit of the Ccr4-Not complex, NOT1, by the deletion of SPT3.

Publication Title

A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20295
Transcriptional analysis of multiple brain regions in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20291
Transcriptional analysis of putamen in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20168
Transcriptional analysis of prefrontal area 9 in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20292
Transcriptional analysis of whole substantia nigra in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact