refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 143 results
Sort by

Filters

Technology

Platform

accession-icon GSE9432
A SAGA-Independent Function of SPT3 Mediates Transcriptional Deregulation in a Mutant of the Ccr4-Not Complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The conserved multi-subunit Ccr4-Not complex regulates gene expression in diverse ways. In this work, we characterize the suppression of temperature sensitivity associated with a mutation in the gene encoding the scaffold subunit of the Ccr4-Not complex, NOT1, by the deletion of SPT3.

Publication Title

A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20295
Transcriptional analysis of multiple brain regions in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20291
Transcriptional analysis of putamen in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20168
Transcriptional analysis of prefrontal area 9 in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20292
Transcriptional analysis of whole substantia nigra in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE8488
Inhibitor Trials
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Objectives: To identify similarities and differences in gene expression data in the MEK/ERK and PI3K pathways and to determine how histone modification affects these same pathways.

Publication Title

Regulation of gene expression by PI3K in mouse growth plate chondrocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74078
Late stages of T-cell maturation in the thymus involve NF-B and tonic type I interferon signaling
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Positive selection occurs in the thymic cortex, but critical maturation events occur later in the medulla. We defined the precise stage at which T cells acquire competence to proliferate and emigrate. Transcriptome analysis of late gene changes suggested roles for NF-B and interferon signaling. Mice lacking the IKK kinase TAK1, showed normal positive selection, but a specific block in functional maturation. NF-B signaling provided protection from TNF, and was required for proliferation and emigration. Alternatively, the interferon signature was independent of NF-B, and IFNR deficient thymocytes showed reduced STAT1 levels and phenotypic abnormality, but were competent to proliferate. Thus, both NF-B and tonic IFN signals are involved in the final maturation of thymocytes into nave T cells.

Publication Title

Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP100178
'Placeholder' nucleosomes underlie germline-to-embryo DNA methylation reprogramming [RNA-Seq]
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The function and retention/reprogramming of epigenetic marks during the germline-to-embryo transition is a key issue in developmental and cellular biology, with relevance to stem cell programming and trans-generational inheritance. In zebrafish, DNAme patterns are programmed in transcriptionally-quiescent early cleavage embryos; paternally-inherited patterns are maintained, whereas maternal patterns are reprogrammed to match the paternal pattern. Here we show that a 'placeholder' nucleosome, containing the histone H2A variant H2A.Z(FV) and H3K4me1, occupies virtually all regions lacking DNAme in both sperm and cleavage embryos – residing at promoters encoding housekeeping and early embryonic transcription factors. Upon genome-wide transcriptional onset, genes with the Placeholder become either active H3K4me3-marked or silent H3K4me3/K27me3-marked (bivalent). Importantly, functional perturbation causing Placeholder loss confers DNAme acquisition, whereas acquisition/expansion of Placeholder confers DNA hypomethylation and improper gene activation. Thus, during transcriptionally quiescent stages (gamete-zygote-cleavage), an H2A.Z(FV)/H3K4me1-containing Placeholder nucleosome deters DNAme, poising parental genes for either gene-specific activation or facultative repression. Overall design: Transcript abundance was analyzed for zebrafish sperm, and cleavage stage embryos that were either wild type or mutant for the anp32e gene.

Publication Title

Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22196
Skin gamma delta T cells in Obesity
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Epithelial cells provide an initial line of defense against damage and pathogens in barrier tissues such as the skin; however this balance is disrupted in obesity and metabolic disease. Skin gamma delta T cells recognize epithelial damage and release cytokines and growth factors that facilitate wound repair. To determine the impact of obesity and metabolic disease on skin gamma delta T cells, we isolated skin gamma delta T cells from 10-week old C57BLKS/J lean db/+ and obese db/db animals for further study. Due to a deficiency in the leptin receptor (db), homozygous db/db animals do not process satiety signals, continually eat and develop severe obesity and metabolic disease. Skin gamma delta T cells isolated from these animals were compared for changes in mRNA expression using microarray. We have determined that obesity and metabolic disease negatively impacts homeostasis and functionality of skin gamma delta T cells, rendering host defense mechanisms vulnerable to injury and infection.

Publication Title

Gammadelta T cells are reduced and rendered unresponsive by hyperglycemia and chronic TNFalpha in mouse models of obesity and metabolic disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2154
Micromass Time Course
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Primary micromass cultures derived from 11.5 day old mouse embryo limb buds were cultured for 15 days in differentiating conditions (beta-glycerophosphate and ascorbic acid). Total RNA from differentiating chondrocytes was isolated every three days i.e. days 3,6,9,12 and 15 and hybridized to MOE430A chips. Objective: Gain a view of the temporal gene expression changes occuring during chondrocyte differentiation.

Publication Title

Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact